Gönderen Konu: $a+b+c+ab+bc+ac=abc+1$ Eşitliği  (Okunma sayısı 3697 defa)

Çevrimdışı stuart clark

  • G.O Bağımlı Üye
  • *****
  • İleti: 124
  • Karma: +4/-0
$a+b+c+ab+bc+ac=abc+1$ Eşitliği
« : Ekim 17, 2011, 04:32:51 ös »
determine all triplets (a,b,c) in a+b+c+(ab+bc+ca)=abc+1. Where a,b,c are positive integer
« Son Düzenleme: Kasım 27, 2024, 11:42:04 öö Gönderen: alpercay »

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.801
  • Karma: +26/-0
  • İstanbul
Ynt: positive integer
« Yanıtla #1 : Ekim 22, 2011, 09:19:18 ös »
WLOG let's assume that 1 < a < b < c.

for a = 1, then given equation 1 + b + c + b + c + bc = bc + 1 and there is no solution.

for a = 2, then given equation 1 + 3b + 3c = bc or (b - 3)(c - 3) = 10. Hence (a, b, c) solutions are (2, 5, 8), (2, 4, 13) and all the permutations.

for a = 3, then given equation 1 + 2b + 2c = bc or (b - 2)(c - 2) = 5. Hence (a, b, c) solutions are (3, 3, 7) and all the permutations.

for a = 4, there is so solution of the equation that satisfy 1 < a < b < c.

Therefore let's assume that 5 < a. Now a + b + c + ab + ac + bc = abc + 1 > 5bc + 1 > 5bc.

-> a + b + c + ab + ac > 4bc

-> a + b + c > 2bc

-> (3/2).(b + c) > 2bc

-> 6c > 4bc

-> b < 2. contradiction!.

So, there is no solution for 5 < a. All solutions are (2, 5, 8), (2, 4, 13), (3, 3, 7) and the permutations.

Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı stuart clark

  • G.O Bağımlı Üye
  • *****
  • İleti: 124
  • Karma: +4/-0
Ynt: positive integer
« Yanıtla #2 : Ekim 28, 2011, 04:38:12 öö »
Thanks scarface

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal