Gönderen Konu: permütasyon-kombinasyon {Çözüldü}  (Okunma sayısı 4730 defa)

Çevrimdışı demirhan

  • G.O Azimli Üye
  • ***
  • İleti: 32
  • Karma: +0/-0
permütasyon-kombinasyon {Çözüldü}
« : Şubat 02, 2009, 08:10:47 ös »
Merdivenleri birer birer,ikişer ikişer,üçer üçer çıkıp inebilen bir çocuk beş basamaklı merdiveni kaç farklı şekilde çıkıp inebilir?
« Son Düzenleme: Şubat 04, 2009, 02:04:10 öö Gönderen: felixmurd3r »

Çevrimdışı FEYZULLAH UÇAR

  • G.O Genel Moderator
  • Geo-Maniac
  • *******
  • İleti: 511
  • Karma: +10/-0
  • ŞanlıGümüşhane
Ynt: permütasyon-kombinasyon
« Yanıtla #1 : Şubat 02, 2009, 10:19:33 ös »
(11111),(1112),(122),(113),(23) şekillerinde çıkar.Tekrarlı permütasyondan
11111......>5!/5!=1
1112........> 4!/3!.1!=4
122..........> 3!/2!.1!=3
113..........> 3!/2!.1!=3
23............>2!/1!.1!=2 
olur.1+4+3+3+2=13 farklı şekilde çıkar
Kuyu derin değil ip kısa...

Çevrimdışı proble_m

  • G.O Bağımlı Üye
  • *****
  • İleti: 159
  • Karma: +3/-0
    • Watewatik
Ynt: permütasyon-kombinasyon
« Yanıtla #2 : Şubat 02, 2009, 11:38:59 ös »
(11111),(1112),(122),(113),(23) şekillerinde çıkar.Tekrarlı permütasyondan
11111......>5!/5!=1
1112........> 4!/3!.1!=4
122..........> 3!/2!.1!=3
113..........> 3!/2!.1!=3
23............>2!/1!.1!=2 
olur.1+4+3+3+2=13 farklı şekilde çıkar

Soruda "kaç farklı şekilde çıkıp inebilir?" dediği için ufak bir ekleme yapılırsa;

13*13=169 olur.
Akarsuyum haldan hala büründüm
Cahilin gözünde nokta göründüm
Derya idim damlalara bölündüm
Çok bulandım süzemedim ben beni

Çevrimdışı FEYZULLAH UÇAR

  • G.O Genel Moderator
  • Geo-Maniac
  • *******
  • İleti: 511
  • Karma: +10/-0
  • ŞanlıGümüşhane
Ynt: permütasyon-kombinasyon
« Yanıtla #3 : Şubat 03, 2009, 01:11:54 öö »
evet ;D
Kuyu derin değil ip kısa...

Çevrimdışı Ferhat GÖLBOL

  • G.O Bağımlı Üye
  • *****
  • İleti: 165
  • Karma: +2/-0
Ynt: permütasyon-kombinasyon {Çözüldü}
« Yanıtla #4 : Şubat 01, 2011, 01:32:46 ös »
Soru, Fibonacci dizisinin genişletilmiş hali. Bu kişi n. basamağa ya (n-1). basamaktan bir basamaklık adımda, ya (n-2). basamaktan iki basamaklık adımda, ya da (n-3). basamaktan 3 basamaklık adımda çıkar. Dolayısıyla
sn=sn-1+sn-2+sn-3 'tür.
1. basamağa s1=1, 2. basamağa s2=2, 3. basamağa s3=4 farklı şekilde çıkar.
s4=1+2+4=7
s5=2+4+7=13 farklı şekilde çıkıp 13 farklı şekilde iner. Dolayısıyla 13*13=169 farklı şekilde çıkıp iner.

Soru: Her adımda en fazla k basamak çıkabilen bir kişi n. basamağa kaç farklı şekilde çıkabilir?
Yanıt
  a) n küçük eşit k ise: Bu kişi ilk n basamak içinden istediği her basamağa çıkabilir. Basamaklar kümesini Bn={b1,b2, ... , bn} ile gösterirsek Bn-1 kümesinin herhangi bir alt kümesini seçer, bu alt kümenin elemanlarını indisleri artan sırada olacak şekilde dizer ve oluşan sıraya göre basamakları çıkar.En son da bn'e çıkar. Bu durumda farklı çıkışların sayısı n-1 elemanlı Bn-1 kümesinin tüm alt kümeleri sayısı olan 2n-1 'e eşittir.
  b) n > k ise: Bu kişi n. basamağa (n-1). , (n-2). , ... , (n-k). basamaklardan çıkabilir. Bu durumda
sn=sn-1+sn-2+...+sn-k eşitliği oluşur.
« Son Düzenleme: Şubat 01, 2011, 02:54:27 ös Gönderen: Ferhat GÖLBOL »
"Biz bilimadamları kumsalda çakıl taşları arayan çocuklar gibiyizdir. Eğer ben arkadaşlarımdan biraz daha fazla çakıl taşı toplayabildiysem bunun nedeni dizlerime kadar suya girmeye cesaret edebilmiş olmamdır."
Sir Isaac Newton

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal