Cevap: $\boxed{B}$
$x=\sqrt{2+\sqrt{9+4\sqrt2}}=\sqrt{2+\sqrt{9+2\sqrt8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{3+2\sqrt{2}}=\sqrt{2}+1$
olup
$\dfrac{x^3-3x^2+x-2}{x^2-2x+2}=\dfrac{(x-1)^3-(2x+1)}{(x-1)^2+1}=\dfrac{(\sqrt{2})^3-2(\sqrt{2}+1)-1}{(\sqrt{2})^2+1}=\dfrac{2\sqrt{2}-2\sqrt{2}-2-1}{2+1}=\dfrac{-3}{3}=-1$
bulunur.