Gönderen Konu: $d(n) \leq 2\sqrt{n}$ Eşitsizliği  (Okunma sayısı 3455 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.801
  • Karma: +26/-0
  • İstanbul
$d(n) \leq 2\sqrt{n}$ Eşitsizliği
« : Aralık 23, 2024, 02:59:22 öö »
Lemma: $n$ pozitif tam sayısının pozitif bölenlerinin sayısı $d(n)$ ise, $d(n) \leq 2\sqrt{n}$ dir. İspatlayınız.

Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.801
  • Karma: +26/-0
  • İstanbul
Ynt: $d(n) \leq 2\sqrt{n}$ Eşitsizliği
« Yanıtla #1 : Aralık 23, 2024, 03:13:45 öö »
İspat:
Her $m$ pozitif böleni için, $\dfrac{n}{m}$ de bir bölenidir. Bu şekilde bölenler $(m, \dfrac{n}{m})$ şeklinde çiftler oluşturur. Eğer $m \leq \sqrt{n}$ ise, $\dfrac{n}{m} \geq \sqrt{n}$ olur. Böylece her çift için en fazla iki farklı bölen vardır. $m \leq \sqrt{n}$ olan bölenlerin sayısı en fazla $\sqrt{n}$ olabilir. Her biri için bir eşleşen bölen olduğundan, toplam bölen sayısı en fazla $ 2\sqrt{n}$ olur. $d(n) \leq 2\sqrt{n}$'dir.


Not: Özel Durum (Kare Sayılar)
Eğer $n$ tam kare ise, $m = \sqrt{n}$ böleni ile eşleşen farklı bir çift yoktur. Bu durumda $ d(n)\leq 2\sqrt{n}-1$ olur. Yine $d(n)$, $2\sqrt{n}$’yi aşmaz.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.503
  • Karma: +15/-0
Ynt: $d(n) \leq 2\sqrt{n}$ Eşitsizliği
« Yanıtla #2 : Ocak 07, 2025, 07:54:28 öö »
Buradaki ilk sorudur. Normalde bu eşitsizliğin eşitlik durumu yoktur ancak $d(n)\leq \left\lfloor 2\sqrt{n}\right\rfloor$ eşitsizliğinin eşitlik durumlarından biri $n=12$'dir.
Gerçek hikayeler aslında söylenmeyenlerdir.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.503
  • Karma: +15/-0
Ynt: $d(n) \leq 2\sqrt{n}$ Eşitsizliği
« Yanıtla #3 : Haziran 02, 2025, 01:11:38 ös »
Eşitsizliği iyileştirmeye çalışalım, daha doğrusu, her $n$ için $d(n)\leq k\sqrt{n}$ olan en küçük $k$ reel sayısını arayalım. $n=1$ için $k\geq 1$'dir. $n\geq 2$ için $n=\prod\limits_{p\mid n}p^{v_p(n)}$ olarak asal çarpanlarına ayıralım. $$\frac{d(n)}{\sqrt{n}}=\prod_{p\mid n}\frac{v_p(n)+1}{p^{v_p(n)/2}}$$ olacaktır.

Bir tablo ile $\frac{v_p(n)+1}{p^{v_p(n)/2}}$ değerini inceleyelim, $$
\begin{array}{|c|c|c|c|c|c|}
\hline
 & v_p(n)=0 &  v_p(n)=1 & v_p(n)=2 & v_p(n)=3 & v_p(n)\geq 4 \\ \hline
p=2 &  1 & \sqrt{2}\approx 1.414 & 1.5 & \sqrt{2}\approx 1.414 & <\sqrt{2}\\ \hline
p=3 &  1 & \frac{2\sqrt{3}}{3}\approx 1.155 & 1 & <1 & <1 \\ \hline
p\geq 5 &  1 & <1 & <1 & <1 & <1 \\ \hline
\end{array}
$$ tablosunu elde ederiz. Bu tablodan da yola çıkarak $\frac{d(n)}{\sqrt{n}}$'nin $n\geq 2$ için en büyük değerini $v_2(n)=2$, $v_3(n)=1$ ve $p\geq 5$ için $v_p(n)=0$ durumunda aldığını görebiliriz. Sonuç olarak maksimum değer $n=2^2\cdot 3=12$ iken alınır ve $$\max_{n}\frac{d(n)}{\sqrt{n}}=\max\left\{\frac{d(12)}{\sqrt{12}},\frac{d(1)}{\sqrt{1}}\right\}=\sqrt{3}$$ bulunur. Dolayısıyla, $d(n)\leq 2\sqrt{n}$ eşitliği, en iyi şekilde $d(n)\leq \sqrt{3n}$'e iyileştirilebilir (yukarıda bahsettiğimiz iyileştirme anlamında). Eşitlik durumu $n=12$'dir.
« Son Düzenleme: Haziran 02, 2025, 01:15:50 ös Gönderen: Metin Can Aydemir »
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal