Payda eşitleyelim ve $\sin^2{x}=\frac{1}{2}(1-\cos{2x})=\frac{1}{2}\left(\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\cdots\right)$ olduğunu kullanalım. $$\lim\limits_{x\to 0}\left(\frac{x^2-\sin^2{x}}{x^2\sin^2{x}}\right)=\lim\limits_{x\to 0}\left(\frac{x^2-\frac{1}{2}\left(\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\cdots\right)}{x^2\frac{1}{2}\left(\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\cdots\right)}\right)$$ $$=\lim\limits_{x\to 0}\left(\frac{2x^2-\left(\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\cdots\right)}{x^2\left(\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\cdots\right)}\right)$$ $$=\lim\limits_{x\to 0}\left(\frac{\frac{(2x)^4}{4!}-\frac{(2x)^6}{6!}+\cdots}{\frac{(2x)^2x^2}{2!}-\frac{(2x)^4x^2}{4!}+\cdots}\right)=\frac{\frac{2^4}{4!}}{\frac{2^2}{2!}}=\frac{1}{3}.$$