Gönderen Konu: Tübitak Lise Takım Seçme 2018 Soru 6  (Okunma sayısı 1599 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.786
  • Karma: +10/-0
Tübitak Lise Takım Seçme 2018 Soru 6
« : Ocak 06, 2024, 12:47:51 öö »
$a_0, a_1, \ldots, a_{100}$ ve $b_1, b_2,\ldots, b_{100}$ gerçel sayılar dizileri her $n=0, 1, \ldots, 99$ için, ya
$$a_{n+1}=\frac{a_n}{2} \quad \text{ve} \quad b_{n+1}=\frac{1}{2}-a_n,$$ ya da $$a_{n+1}=2a_n^2 \quad \text{ve} \quad b_{n+1}=a_n$$ özelliğini sağlar.
$a_{100}\leq a_0$ ise, $b_1+b_2+\cdots+b_{100}$ ifadesinin alabileceği en büyük değer nedir?

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal