Muirhead Eşitsizliği'ni her ikisi de simetrik olan toplamlara uygulayarak
$$a_{j}^{(p+1)(n-1)+1}+a_{j+1}^{(p+1)(n-1)+1}+\cdots+a_{j-2}^{(p+1)(n-1)+1}\geq a_j^{p+2}a_{j+1}^{p+1}a_{j+2}^{p+1}\cdots a_{j-2}^{p+1}+a_j^{p+1}a_{j+1}^{p+2}a_{j+2}^{p+1}\cdots a_{j-2}^{p+1}+\cdots+a_j^{p+1}a_{j+1}^{p+1}\cdots a_{j-3}^{p+1} a_{j-2}^{p+2}$$
$$=\left(a_ja_{j+1}\cdots a_{j-2}\right)^{p+1}\left(a_1+a_2+\cdots +a_{j-2}\right)$$
olduğunu söyleyebiliriz. O zaman
$$LHS=\sum_{cyc-j}{\dfrac{(a_ja_{j+1}\cdots a_{j-2})^{p}}{k\left(a_ja_{j+1}\cdots a_{j-2}\right)^{p}+a_j^{(p+1)(n-1)+1}+a_{j+1}^{(p+1)(n-1)+1}+\cdots+a_{j-2}^{(p+1)(n-1)+1}}}$$
$$\leq \sum_{cyc-j}{\dfrac{(a_ja_{j+1}\cdots a_{j-2})^{p}}{k\left(a_ja_{j+1}\cdots a_{j-2}\right)^{p}+\left(a_ja_{j+1}\cdots a_{j-2}\right)^{p+1}\left(a_1+a_2+\cdots +a_{j-2}\right)}}$$
$$=\sum_{cyc-j}{\dfrac{1}{k+a_j^2a_{j+1}\cdots a_{j-2}+a_ja_{j+1}^2\cdots a_{j-2}+\cdots+a_ja_{j+1}\cdots a_{j+n-2}^2}}=\sum_{cyc}{\dfrac{1}{a_1a_2\cdots a_n+a_j^2a_{j+1}\cdots a_{j-2}+a_ja_{j+1}^2\cdots a_{j-2}+\cdots+a_ja_{j+1}\cdots a_{j-2}^2}}$$
$$=\sum_{cyc}{\dfrac{1}{a_ja_{j+1}\cdots a_{j-2}\left(a_1+a_2+\cdots+a_n\right)}}$$
Şimdi toplamın içerisindeki paydaları eşitlersek
$$LHS\leq \sum_{cyc}{\dfrac{1}{a_ja_{j+1}\cdots a_{j-2}\left(a_1+a_2+\cdots+a_n\right)}}=\dfrac{\sum_{cyc}{a_1}}{\prod{a_1}.\sum_{cyc}{a_1}}=\dfrac{1}{\prod{a_1}}=\dfrac{1}{k}$$
elde eder ve ispatı tamamlarız.