Gönderen Konu: 2005 Antalya Matematik Olimpiyatı 2. Aşama Lise 1 Soru 1  (Okunma sayısı 2886 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.642
  • Karma: +8/-0
2005 Antalya Matematik Olimpiyatı 2. Aşama Lise 1 Soru 1
« : Temmuz 03, 2023, 11:38:24 ös »
$0<a_1<a_2< \cdots < a_{2005}$ tam sayılar olmak üzere, $A=\{a_1,a_2,...,a_{2005} \}$ olsun. $A$'nın özalt kümelerinin hiçbirindeki sayıların toplamı $2005$'e bölünmesin. Bu durumda, $a_1+a_2+ \cdots +a_{2005}$ toplamının $2005$'e bölündüğünü gösteriniz.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.503
  • Karma: +15/-0
Ynt: 2005 Antalya Matematik Olimpiyatı 2. Aşama Lise 1 Soru 1
« Yanıtla #1 : Ekim 07, 2023, 04:36:04 ös »
$i=1,2,\dots,2004$ için $A_i=\{a_1,a_2,\dots, a_i\}$ ve $S_i=\sum\limits_{x\in A_i}x$ olarak tanımlayalım. Bu durumda $i\neq j$ ise $S_i\not\equiv S_j\pmod{2005}$ olmalıdır. Aksi taktirde $$|S_i-S_j|\equiv a_{j+1}+a_{j+2}+\cdots+a_i\quad \text{veya}\quad a_{i+1}+a_{i+2}+\cdots+a_j\equiv 0\pmod{2005}$$ olacaktır. Bu da hiçbir özalt kümenin elemanları toplamının $2005$'e bölünmemesi ile çelişir. $S_i$'ler aynı zamanda $2005$'e bölünmediğinden $S_1,S_2,\dots,S_{2004}$ toplamları $2005$ modunda $1,2,\dots,2004$ kalanlarını verecektir. Eğer $S=a_1+a_2+\cdots+a_{2005}$ toplamı $1,2,\dots,2004$'den birini kalan olarak veriyorsa bir tane $i$ için $S-S_i=a_{i+1}+a_{i+2}+\cdots+a_{2005}$ toplamı $2005$'e bölünecektir. Bu da bir çelişkidir. Yani $a_1+a_2+\cdots+a_{2005}$ toplamı $2005$'e bölünür.

Verilen kümeye örnek olarak elemanları $a_i=2005i+1$ olarak tanımlayabiliriz.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal