Gönderen Konu: 1996 Antalya Matematik Olimpiyatı 2. Aşama Soru 1  (Okunma sayısı 1480 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
1996 Antalya Matematik Olimpiyatı 2. Aşama Soru 1
« : Mart 22, 2023, 03:09:16 öö »
$(x-y+z)^2=x^2-y^2+z^2$ denkleminin tüm reel çözümlerini bulunuz.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.322
  • Karma: +9/-0
Ynt: 1996 Antalya Matematik Olimpiyatı 2. Aşama Soru 1
« Yanıtla #1 : Mart 22, 2023, 08:20:32 ös »
Eşitliği düzenleyelim, $$(x-y+z)^2=x^2+y^2+z^2-2xy-2yz+2xz=x^2-y^2+z^2$$ $$\iff y^2-y(x+z)+xz=0\iff (y-x)(y-z)=0$$ Dolayısıyla çözümler $t,k$ reel sayı parametreleri için $(x,y,z)=(t,t,k)$ veya $(t,k,k)$ şeklindedir.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal