Gönderen Konu: Tübitak Lise 1. Aşama 2022 Soru 15  (Okunma sayısı 2343 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.642
  • Karma: +8/-0
Tübitak Lise 1. Aşama 2022 Soru 15
« : Mayıs 24, 2022, 02:41:33 ös »
$x,y,z \geq -2$ olmak üzere,
$$\begin{array}{lcl}
x^3 + 2 &=& 5y+z \\
y^3 + 2 &=& 2z+7x \\
z^3 + 2 &=& -2y-4x
\end{array}$$
denklem sistemini sağlayan kaç $(x,y,z)$ gerçel sayı üçlüsü vardır?

$\textbf{a)}\ 0  \qquad\textbf{b)}\ 1  \qquad\textbf{c)}\ 2  \qquad\textbf{d)}\ \text{Sonsuz çoklukta}  \qquad\textbf{e)}\ \text{Hiçbiri}$
« Son Düzenleme: Ocak 29, 2023, 05:02:14 öö Gönderen: geo »

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.503
  • Karma: +15/-0
Ynt: Tübitak Lise 1. Aşama 2022 Soru 15
« Yanıtla #1 : Mayıs 31, 2022, 07:49:35 ös »
Cevap: $\boxed{B}$

Verilen denklemleri taraf tarafa toplarsak $x^3+y^3+z^3+6=3x+3y+3z$ buluruz. Bu ifadeyi tek tarafta toplarsak $$(x^3-3x+2)+(y^3-3y+2)+(z^3-3z+2)=\sum{(x-1)^2(x+2)}=0$$ elde edilir. $(t-1)^2(t+2)$ polinomu $t\geq -2$ için negatif olamayacağından $t=x,y,z$ için toplamların $0$ etmesinin tek yolu her biri için $0$'a eşit olmasıdır. Buradan $x,y,z$ sayıları $1$ veya $-2$ bulunur.

Eğer $x=-2$ ise ilk denklemden $5y+z=-6$ bulunur fakat $y$ ve $z$ sayıları da $1$ veya $-2$ olduğundan çözüm gelmez.

Eğer $x=1$ ise $5y+z=3$ elde edilir. Bu denklem sadece $(y,z)=(1,-2)$ için sağlanır. Yani sadece $(x,y,z)=(1,1,-2)$ çözümü elde edilir. Bu üçlünün diğer denklemleri sağladığı görülebilir.
« Son Düzenleme: Şubat 02, 2023, 01:46:09 öö Gönderen: geo »
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal