Problemi $5$-gen ve sonra asal $p$-gen için daha genel halde çözelim.
Çözüm 1 (Simetri Prensibi ile):Düzgün beşgenin her bir köşesi için $n$ tane renkten birini seçerek $n^5$ boyama yapabiliriz. Döndürme sonucu biri diğerinden elde edilen boyamalar özdeş kabul edildiği için tıpkı dairesel permütasyonda olduğu gibi tüm durumu $5$ e bölmek isteriz. Fakat bunun biraz sıkıntılı olduğunu görmeliyiz. Örneğin $n=2$ için $2^5$ sayısı $5$ ile tam bölünmüyor. Bu, bir boyama sayısı olamaz. Buradaki sorun, bazı boyamalar tüm durum olan $n^5$ içinde $5$ er kez görülürken bazıları yalnızca $1$ kez görülüyordur.
İşte bu yalnızca $1$ kez görülen boyamaların sayısını bulup tü durumdan çıkaralım. Bunlar, tek renkli boyamalardır. $n$ farklı renk olduğundan tam $n$ tane tek renkli boyama vardır. O halde $n^5 - n$ tane boyama, $5$ er kez görülmüşlerdir. Bunların hepsini birer kez saymak istediğimizden
$$ \dfrac{n^5 - n}{5}+n = \dfrac{n^5 +4n}{5}$$
özdeş olmayan boyama türü elde ederiz.
Çözüm 2 (Burnside Lemması ile): Beşgenin merkezi etrafında döndürme fonksiyonlarının grubu $G=\{ e, r_1, r_2, r_3, r_4 \}$ olsun. Burada $e=(1)(2)(3)(4)(5)$ özdeş fonksiyon, $r_1=(12345)$ $72^\circ$ döndürme fonksiyonudur. Diğerleri de $r_2=(13524)$, $r_3=(14253)$, $r_4=(15431)$ sırasıyla $144^\circ $, $216^\circ$, $288^\circ$ açıları ile döndürme fonksiyonlarıdır. Burnside Lemması'na göre
$$ \text{orbit sayısı} = \dfrac{1}{|G|}\sum_{f\in G}|Fix(f)|$$
dir. Şimdi $|Fix(f)|$ değerlerinin nasıl hesaplandığına bakalım.
$n$ farklı rengimiz vardır. $e$ özdeş fonksiyonu $5$ ayrık devirin çarpımı biçiminde olduğundan $|Fix(e)|=n\cdot n\cdot n\cdot n\cdot n = n^5$ tir.$r_i$ döndürme fonksiyonları $1$ ayrık devirin çarpımı biçiminde olduğundan $|Fix(r_1)|=|Fix(r_2)| = |Fix(r_3)| = |Fix(r_4)| =n $ dir. Buna göre
$$ \text{orbit sayısı} = \dfrac{1}{5}\sum_{f\in G}|Fix(f)|=\dfrac{n^5 + 4n}{5}$$
tane özdeş olmayan boyama elde edilir.
NOTLAR1. Genel olarak $p$ asal sayı iken düzgün $p$-genin köşelerini $n$ farklı renk seçimi ile boyama sayısı birinci yol kullanılarak
$$ \dfrac{n^p - n}{p} + p = \dfrac{n^p + (p-1)n}{p} $$
ve ikinci yol kullanılarak $|Fix(e)|=n^p$, $|Fix(r_i)|=n$ olup yine
$$ \text{orbit sayısı} = \dfrac{1}{p}\sum_{f\in G}|Fix(f)|=\dfrac{n^p + (p-1)n}{p}$$
elde edilir.
2. $\dfrac{n^p - n}{p}$ bir tam sayı olduğundan $n^p \equiv n \pmod{p}$ sonucu elde edilir. Fermat teoreminin kombinatorik bir ispatıdır.
3. Eşkenar üçgen ve kare için kolye, bilezik sayıları hesaplarını
bağlantı 1 ,
Bağlantı 2 ve
Bağlantı 3'te video olarak sundum. Daha pekiştirici olması için yeni videolar da ekleyeceğim.