Gönderen Konu: $\sqrt{n}$ nin irrasyonelliği  (Okunma sayısı 61 defa)

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3012
  • Karma: +21/-0
  • İstanbul
$\sqrt{n}$ nin irrasyonelliği
« : Haziran 24, 2020, 02:48:52 ös »
$n$ tam kare olmayan bir pozitif tam sayı ise $\sqrt{n}$ irrasyonel sayıdır, ispatlayınız.

Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3012
  • Karma: +21/-0
  • İstanbul
Ynt: $\sqrt{n}$ nin irrasyonelliği
« Yanıtla #1 : Haziran 24, 2020, 02:51:41 ös »
Elemanter sayılar teorisi yöntemleri ile çözüm vereceğiz. Önce bir lemma ispatlayalım:


Lemma: $n$ bir pozitif tam sayı ve $\sqrt{n}$ bir rasyonel sayı olsun. Bu durumda $\sqrt{n}$ bir tam sayıdır. Diğer bir deyişle $n$ bir tam karedir.


İspat: $a,b$ pozitif tam sayılar ve $(a,b)=1$ olmak üzere $\sqrt{n}=\dfrac{a}{b}$ biçiminde yazılmış olsun. Kare alırsak $n=\dfrac{a^2}{b^2}$ olur. Fakat $(a^2, b^2)=1$ olduğundan $n=\dfrac{a^2}{b^2}$ kesri indirgenemez (daha fazla sadeleşemez) biçimdedir. Öte yandan $n$ bir tam sayı olduğundan $b=1$ olmalıdır. Böylece $n=a^2$ biçiminde tam kare bir tam sayıdır.



Şimdi ana probleme bakalım. $n$ tam kare olmayan bir pozitif tam sayı ise $m^2 < n <(m+1)^2$ olacak biçimde bir $m$ pozitif tam sayısı vardır. Karekök alırsak, $m<\sqrt{n}<m+1$ olur. Ardışık iki tam sayının arasında başka bir tam sayı olamayacağından $\sqrt{n}$ bir tam sayı değildir. $\sqrt{n}$ sayısı rasyonel sayı da olamaz. Çünkü $\sqrt{n}$ rasyonel sayı olsaydı ispatladığımız Lemma'ya göre $\sqrt{n}$ bir tam sayı oluyordu ve bir çelişki elde ederdik. Sonuç olarak $\sqrt{n}$ sayısı irrasyoneldir.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal