Gönderen Konu: Balkan Matematik Olimpiyatı 2014 Soru 1  (Okunma sayısı 5954 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.424
  • Karma: +12/-0
Balkan Matematik Olimpiyatı 2014 Soru 1
« : Haziran 25, 2015, 03:46:18 ös »
$x,y,z$ pozitif reel sayıları $xy+yz+zx=3xyz$ koşulunu sağlıyorsa \[x^{2}y+y^{2}z+z^{2}x \geq 2(x+y+z)-3 \] eşitsizliğini ispatlayınız.Eşitlik durumunu bulunuz.

Çevrimdışı mehmetutku

  • G.O Demirbaş Üye
  • ******
  • İleti: 241
  • Karma: +5/-0
Ynt: Balkan Matematik Olimpiyatı 2014 Soru 1
« Yanıtla #1 : Haziran 25, 2015, 05:24:57 ös »
(Mehmet Utku Özbek)

$xy+yz+zx=3xyz  \ \Rightarrow  \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$    olur. Cauchy Schwarz  uygulayalım.

$\Longrightarrow  \left (\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{x} \right )(x^{2}y+y^{2}z+z^{2}x) \ge \left (x+y+z \right )^2$

$\Longrightarrow  x^2y+y^2z+z^2x \ge \dfrac{(x+y+z)^2}{3}$

Eğer $\dfrac{(x+y+z)^2}{3} \ge 2(x+y+z)-3$   ise ispat biter. Taraf tarafa çarpalım.

$\Longrightarrow (x+y+z)^2 \ge 6(x+y+z)-9$

$\Longrightarrow (x+y+z)^2-6(x+y+z)+9 \ge 0$

$\Longrightarrow (x+y+z-3)^2 \ge 0$

Son ulaştığımız ifade zaten doğrudur. İspat biter.
« Son Düzenleme: Mayıs 29, 2016, 09:13:08 öö Gönderen: geo »
Geometri candır...

Çevrimdışı Hüseyin Yiğit EMEKÇİ

  • Geo-Maniac
  • ********
  • İleti: 900
  • Karma: +6/-0
Ynt: Balkan Matematik Olimpiyatı 2014 Soru 1
« Yanıtla #2 : Eylül 23, 2023, 09:38:24 ös »
Homojenliği kullanacağız.

$xy+yz+zx=3xyz$ ise $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$ dir.

Verilen eşitsizlikte 3 yerine $\sum_{cyc}{\dfrac{1}{x}}$ i yerleştirirsek

$$x^2y+\dfrac{1}{y}+y^2z+\dfrac{1}{z}+z^2x+\dfrac{1}{x}\overbrace{\geq}^{AGO} 2(x+y+z)\geq 2(x+y+z)$$
İspat biter.
''Uzman, çok dar bir alanda yapılabilecek tüm hataları yapmış kişidir.''   ~Niels Bohr

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal