Gönderen Konu: Uluslararası Matematik Olimpiyatı 2001 Soru 4  (Okunma sayısı 1398 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1410
  • Karma: +12/-0
Uluslararası Matematik Olimpiyatı 2001 Soru 4
« : Haziran 05, 2014, 09:14:28 ös »
$n$, $1$ den büyük tek bir tam sayı olsun. $k_1,k_2,\dots,k_n$ tam sayıları verilsin. $1,2,\dots,n$ sayılarının her $a=(a_1,a_2,\dots,a_n)$ permütasyonu için $$S(a)=\sum\limits_{i=1}^{n}k_ia_i$$ şeklinde tanımlanıyor. $n!$, $S(b)-S(c)$ yi bölecek şekilde $b$ ve $c$ permütasyonlarının ($b\neq c$) olduğunu kanıtlayınız.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal