Yanıt: $\boxed{B}$
$a=\sqrt[3]{11+\sqrt{337}}$, $b=\sqrt[3]{11-\sqrt{337}}$ ve $x=a+b$ olsun.
\[
x^{3}=(a+b)^{3}=a^{3}+b^{3}+3ab(a+b)
=(11+\sqrt{337})+(11-\sqrt{337})+3ab\,x
=22+3ab\,x.
\]
Ayrıca $ab=\sqrt[3]{(11+\sqrt{337})(11-\sqrt{337})}
=\sqrt[3]{121-337}
=\sqrt[3]{-216}=-6$. Dolayısıyla $x^{3}=22+3(-6)x=22-18x \Longrightarrow x^{3}+18x=22$ bulunur.