$\angle BAC = \alpha$ olsun.
$O$, $(AKC)$ çemberinin merkezi olduğundan $\angle KOC = 2\alpha$; $AKNC$ kirişler dörtgeni olduğundan $\angle KNB = \angle KAC = \alpha$.
$B,K,N,M$ çembersel olduğundan $\angle KNB = \angle KMB = \alpha$; $A,B,M,C$ çembersel olduğundan $\angle BMC = 180^\circ - \alpha$.
$\angle KMC = 180^\circ-2\alpha$ ve $\angle KOC = 2\alpha$ olduğu için $K$, $M$, $C$, $O$ çembersel ve $KO=OC$ olduğu için de $\angle KMO = \angle OMC = 90^\circ - \alpha$. Bu durumda $\angle OMB = 90^\circ$ dir.