$$\sqrt{u\left(u-a\right)\left(u-b\right)\left(u-c\right)}=ur\Rightarrow \left(u-a\right)\left(u-b\right)=\dfrac{ur^2}{\left(u-c\right)}$$ $$\dfrac{(u-a)+(u-b)}{2}\ge \sqrt{\left(u-a\right)\left(u-b\right)}$$ $$\Rightarrow c\ge 2\sqrt{\left(u-a\right)\left(u-b\right)}$$ $$\Rightarrow \dfrac{1}{c^2}\le \dfrac{1}{4\left(u-a\right)\left(u-b\right)}=\dfrac{u-c}{4ur^2}$$
Benzer şekilde, $\dfrac{1}{a^2}\le \dfrac{u-a}{4ur^2\ }$ ve $\dfrac{1}{b^2}\le \dfrac{u-b}{4ur^2}$ elde edilir. Taraf tarafa topladığımızda,
$$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le \dfrac{u-a}{4ur^2}{\rm +}\dfrac{u-b}{4ur^2}+\dfrac{u-c}{4ur^2}=\dfrac{3u-2u}{4ur^2}=\dfrac{1}{4r^2}$$ elde ederiz. Eşitlik $a=b=c$ iken sağlanır.