Gönderen Konu: no. of integer solution  (Okunma sayısı 4961 defa)

Çevrimdışı stuart clark

  • G.O Bağımlı Üye
  • *****
  • İleti: 124
  • Karma: +4/-0
no. of integer solution
« : Ekim 15, 2012, 04:21:53 ös »
Number of Integer solution of the equation |x|+|y|+|z| = 10

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.794
  • Karma: +26/-0
  • İstanbul
Ynt: no. of integer solution
« Yanıtla #1 : Ekim 16, 2012, 08:39:27 ös »
we see that for n > 0 integers,

number of solutions |x| + |y| = n is 4n.

If |z| = 0 then z = 0 and |x| + |y| = 10. So, number of solution = 1.4.10=40

If |z| = 1 then z = ±1 and |x| + |y| = 9. So, number of solution = 2.4.9

If |z| = 2 then z = ±2 and |x| + |y| = 8. So, number of solution = 2.4.8

... etc

If |z| = 9 then z = ±9 and |x| + |y| = 1. So, number of solution = 2.4.1
If |z| = 10 then z = ±10 and |x| + |y| = 0. So, number of solution = 2.1=2

total = 40 + 2.4(9+8+...+1) + 2 = 402
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı stuart clark

  • G.O Bağımlı Üye
  • *****
  • İleti: 124
  • Karma: +4/-0
Ynt: no. of integer solution
« Yanıtla #2 : Ekim 21, 2012, 05:29:47 öö »
Thanks Admin Got it

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.783
  • Karma: +10/-0
Ynt: no. of integer solution
« Yanıtla #3 : Ekim 21, 2012, 12:10:16 ös »
Number of Integer solution of the equation |x|+|y|+|z| = 10
We will use combination with repetition.
Suppose |x|,|y|,|z| are all positive. In that case, if we rewrite |x|=a+1, |y|=b+1, |z|=c+1, we will get a+b+c=7.
There are C(7+3-1, 7)= 36 ways to distribute 7 objects into 3 boxes.
But x=-a-1, y=-b-1, z=-c-1 are also solutions. So there are 23x36=288 ways.

Suppose two of |x|, |y|, |z| are 0. These two can be selected in C(3, 2) ways.
So there are 2xC(3, 2) = 6 ways.

Suppose only one of |x|, |y|, |z| is 0. This one can be selected in C(3, 1) ways.
Let |x|=0 and |y|=b+1, |z|=c+1.
We will get b+c = 8.
There are C(8+2-1,8) = 9 ways to distribute 8 objects into 2 boxes.
Since y, z can be negative, there are 22xC(3, 1)xC(8+2-1,8) =108 ways.

In total, there are 288+108+6 = 402 ways.


More general case:
|x1|+|x2|+...+|xr| = n

Suppose k of them are non-zero.
Let |xi| = ai + 1 where i is a positive integer less than k+1.
Σai+1 = n
Σai = n-k

n-k objects can be distributed k boxes in C((n-k)+k -1, n-k) = C(n-1, n-k)  ways.
The non-zero ones can be selected in C(r, k) ways.
Each none-zero can be negative.

So if k of r numbers are non-zero,
zk =  2k.C(r, k).C(n-1, n-k)

Total number of ways is
Σrk=1 2k.C(r, k).C(n-1, n-k)

For our case:
r=3, n=10
Σ3k=1 2k.C(3, k).C(10-1, 10-k)
= 21.C(3, 1).C(10-1, 10-1) + 22.C(3, 2).C(10-1, 10-2)[/b] + 23.C(3, 3).C(10-1, 10-3)
= 2.C(3,1).C(9,9) + 4.C(3,2).C(9,8) + 8.C(3,3).C(9,7)
= 6 + 108 + 288
= 402

Çevrimdışı stuart clark

  • G.O Bağımlı Üye
  • *****
  • İleti: 124
  • Karma: +4/-0
Ynt: no. of integer solution
« Yanıtla #4 : Aralık 11, 2012, 05:48:27 öö »
Thanks Bosbeles

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal