Gönderen Konu: Tübitak Lise Takım Seçme 1991 Soru 1  (Okunma sayısı 4364 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.801
  • Karma: +26/-0
  • İstanbul
Tübitak Lise Takım Seçme 1991 Soru 1
« : Ağustos 08, 2013, 02:34:30 ös »
Bir $ABC$ üçgeninin $AB,AC$ ve $BC$ kenarları üzerinde sırası ile $C'$, $B'$ ve $A'$ noktaları işaretleniyor.
$$\dfrac{AB'}{B'C}=\dfrac{BC'}{C'A}=\dfrac{CA'}{A'B}=k$$ olduğu bilindiğine göre, $AA', BB'$ ve $CC'$ doğrularının sınırladığı üçgenin alanının,
$ABC$ üçgeni alanına oranının $$\dfrac{(k-1)^{2}}{k^{2}+k+1}$$ olduğunu gösteriniz.
« Son Düzenleme: Eylül 07, 2013, 10:22:57 öö Gönderen: bosbeles »
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.786
  • Karma: +10/-0
Ynt: Tübitak Lise Takım Seçme 1991 Soru 1
« Yanıtla #1 : Eylül 07, 2013, 03:20:22 ös »
$AA^{\prime}\cap CC'=\left\{K\right\},\ AA\cap CB'=\left\{L\right\}$ ve $BB'\cap CC'=\left\{M\right\}$ olsun. $CL\cap AB=\{C''\}$ olsun.

Ceva teoremine göre $\dfrac{AC^{''}}{C^{''}B}={\rm \ }\dfrac{AB'}{B'C}\cdot \dfrac{CA'}{A'B}=k^2$ .

$\dfrac{\left[CAL\right]}{\left[CLB\right]}=k^2$, $\dfrac{\left[ALB\right]}{\left[BCL\right]}=k$ olduğuna göre $\left[ABC\right]=\left(k^2+k+1\right)\cdot \left[BCL\right]$ olur.

Benzer şekilde $\left[ABC\right]=\left(k^2+k+1\right)\cdot \left[AKC\right]$ ve $\left[ABC\right]=\left(k^2+k+1\right)\cdot \left[BAL\right]$ elde edilir. Bu durumda $\left[BCM\right]=\left[BAL\right]=[AKC]$ olur. Bu durumda $\left[KLM\right]=\left[ABC\right]-\left[BAL\right]-\left[CAK\right]-\left[CMB\right]=\left[ABC\right]-3k\left[BCL\right]=\left[BCL\right](k^2-2k+1)$.
$$\dfrac{\left[KLM\right]}{\left[ABC\right]}=\dfrac{\left[BCL\right]\left(k^2-2k+1\right)}{\left[BCL\right](k^2+k+1)}=\dfrac{{\left(k-1\right)}^2}{k^2+k+1}.$$

Not: Bu sorunun genel hali Routh Teoremi olarak geçiyor:
$\dfrac{AB'}{B'C}=x,\ \dfrac{BC'}{C'A}=y,\dfrac{CA'}{A'B}=z$ ise $AA',\ BB'$ ve $CC'$ doğrularının sınırladığı üçgenin alanının, $ABC$ üçgeni alanına oranı $\dfrac{{\left(xyz-1\right)}^2}{\left(xy+y+1\right)\left(yz+z+1\right)\left(zx+x+1\right)}$ dir.
« Son Düzenleme: Ocak 29, 2023, 01:40:07 öö Gönderen: geo »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal