1
$ABC$ üçgeninde $AD$ kenarortay olmak üzere, $m(\widehat{ADB})=45^{\circ}$ ve $m( \widehat{ACB})=30^{\circ}$ ise $\widehat{ABC}$ açısı kaç derecedir?

$
\textbf{a)}\ 75
\qquad\textbf{b)}\ 90
\qquad\textbf{c)}\ 105
\qquad\textbf{d)}\ 120
\qquad\textbf{e)}\ 135
$


2
$3m^2n=n^3+A$ denkleminin doğal sayılarda aşağıdaki $A$ değerlerinden hangisi için çözümü vardır?

$
\textbf{a)}\ 301
\qquad\textbf{b)}\ 403
\qquad\textbf{c)}\ 415
\qquad\textbf{d)}\ 427
\qquad\textbf{e)}\ 481
$


3
$P\left (x  \right )=1-x+x^{2}-x^{3}\cdots+x^{18}-x^{19}$ polinomu verilsin. $Q(x)=P(x-1)$ şeklinde tanımlanan $Q$ polinomunda $x^2$ nin katsayısı kaçtır?

$
\textbf{a)}\ 840
\qquad\textbf{b)}\ 816
\qquad\textbf{c)}\ 969
\qquad\textbf{d)}\ 1020
\qquad\textbf{e)}\ 1140
$


4
YARIŞMA sözcüğünün harfleriyle, her harf bu sözcükte olduğu sayıda kullanılmak üzere, anlamlı veya anlamsız, iki kelimeden oluşan kaç cümle yazılabilir?

$
\textbf{a)}\ 2520
\qquad\textbf{b)}\ 5040
\qquad\textbf{c)}\ 15120
\qquad\textbf{d)}\ 20160
\qquad\textbf{e)}\ \text{Hiçbiri}
$


5
Bir üçgenin kenarları $a, b, c$ olsun, eğer $a^2, b^2, c^2$ uzunluğundaki doğru parçaları bir üçgen oluşturuyorsa bu üçgene iyi üçgen diyoruz. Aşağıda açıları verilen üçgenlerden kaç tanesi iyi üçgendir?
  • $40^{\circ}, 60^{\circ}, 80^{\circ}$
  • $10^{\circ}, 10^{\circ}, 160^{\circ}$
  • $110^{\circ}, 35^{\circ}, 35^{\circ}$
  • $50^{\circ}, 30^{\circ}, 100^{\circ}$
  • $90^{\circ}, 40^{\circ}, 50^{\circ}$
  • $80^{\circ}, 20^{\circ}, 80^{\circ}$
$
\textbf{a)}\ 1
\qquad\textbf{b)}\ 2
\qquad\textbf{c)}\ 3
\qquad\textbf{d)}\ 4
\qquad\textbf{e)}\ 5
$


6
Eğer $n$ pozitif tamsayısına bölünen her tamsayı, basamaklarının yerleri nasıl değiştirilirse değiştirilsin yine $n$ ye bölünüyorsa, $n$ ye "iyi" sayı diyelim. Kaç iyi sayı vardır?

$
\textbf{a)}\ 3
\qquad\textbf{b)}\ 4
\qquad\textbf{c)}\ 6
\qquad\textbf{d)}\ 12
\qquad\textbf{e)}\ \text{Sonsuz Sayıda}
$


7
$a=\sqrt[3]{9}-\sqrt[3]{3}+1$ olduğuna göre, $\left ( \dfrac{4-a}{a} \right )^6$ ifadesinin değeri aşağıdakilerden hangisidir?


$
\textbf{a)}\ 3
\qquad\textbf{b)}\ 6
\qquad\textbf{c)}\ 8
\qquad\textbf{d)}\ 9
\qquad\textbf{e)}\ 12
$


8
$10 \times  10$ bir satranç tahtasının birinci satırının karelerine sırasıyla $0, 1, 2, \dots , 9$, ikinci satırının karelerine sırasıyla $10, 11, \dots , 19, \dots$, onuncu satırının karelerine sırasıyla $90, 91, \dots , 99$ sayıları yazılmıştır. Sayıların bazılarının önüne, her satır ve her sütunda tam olarak beş tane olacak şekilde eksi işaretleri ekleyerek tüm sayıların toplamı en az kaç yapılabilir?

$
\textbf{a)}\ -10
\qquad\textbf{b)}\ -2
\qquad\textbf{c)}\ 2
\qquad\textbf{d)}\ 10
\qquad\textbf{e)}\ \text{Hiçbiri}
$




9
$ABCD$ karesinin dışında bir $E$ noktası verilmiştir. $m(\widehat{BEC})=90^{\circ}$ , $F\in [CE] , [AF]\perp[CE] , |AB|=25$, ve $|BE|=7$ olduğuna göre, $|AF|$ kaç birimdir?

$
\textbf{a)}\ 29
\qquad\textbf{b)}\ 30
\qquad\textbf{c)}\ 31
\qquad\textbf{d)}\ 32
\qquad\textbf{e)}\ 33
$


10
$\sqrt{xy}-71\sqrt{x}+30=0$ denkleminin pozitif tam sayılarda kaç tane $(x,y)$ çözüm ikilisi vardır?

$
\textbf{a)}\ 8
\qquad\textbf{b)}\ 18
\qquad\textbf{c)}\ 72
\qquad\textbf{d)}\ 2130
\qquad\textbf{e)}\ \text{Sonsuz sayıda}
$


11
Bir $\left ( a_{n} \right )$ dizisi $a_{1}=1 , a_{2}=5$ ve her $n \geq2$ için $a_{n+1}-2a_{n}+a_{n-1}=7$ şeklinde tanımlanmaktadır. Buna göre $a_{17}$ kaçtır?

$
\textbf{a)}\ 895
\qquad\textbf{b)}\ 900
\qquad\textbf{c)}\ 905
\qquad\textbf{d)}\ 910
\qquad\textbf{e)}\ \text{Hiçbiri}
$


12
Yedi renk kullanılarak her yüzeyi farklı bir renge boyanmış kaç küp oluşturulabilir?

$
\textbf{a)}\ 154
\qquad\textbf{b)}\ 203
\qquad\textbf{c)}\ 210
\qquad\textbf{d)}\ 240
\qquad\textbf{e)}\ \text{Hiçbiri}
$


13
$C$ açısı geniş açı olan $ABC$ üçgeninde $D \in [AB]$ ve $[DC] \perp [BC]$ dir. $m( \widehat{ABC} )=\alpha , m( \widehat{BCA} ) = 3\alpha$ ve $|AC|-|AD|=10$ olduğuna göre $|BD|$ kaç birimdir?

$
\textbf{a)}\ 10
\qquad\textbf{b)}\ 14
\qquad\textbf{c)}\ 18
\qquad\textbf{d)}\ 20
\qquad\textbf{e)}\ 22
$


14
$49^{303} \cdot 3993^{202} \cdot 39^{606}$ sayısının son üç rakamı nedir?


$
\textbf{a)}\ 001
\qquad\textbf{b)}\ 081
\qquad\textbf{c)}\ 561
\qquad\textbf{d)}\ 721
\qquad\textbf{e)}\ 961
$


15
$a_{1}=\dfrac{1}{3}$ ve her $n\geq 1$ için $a_{n+1}=\dfrac{a_{n}}{\sqrt{1+13a_{n}^{2}}}$ şeklinde tanımlanan $(a_{n})$ dizisinin $a_{k}<\dfrac{1}{50}$ koşulunu sağlayan en büyük terimi $a_{k}$ ise $k$ kaçtır?

$
\textbf{a)}\ 194
\qquad\textbf{b)}\ 193
\qquad\textbf{c)}\ 192
\qquad\textbf{d)}\ 191
\qquad\textbf{e)}\ \text{Hiçbiri}
$


16
$50$ kişilik bir sınıfta yapılan $4$ soruluk bir sınavda, herhangi $40$ kişiden en az $1$ kişi tam olarak $3$ soruyu, en az $2$ kişi tam olarak $2$ soruyu, en az $3$ kişi tam olarak $1$ soruyu doğru, en az $4$ kişi ise bütün soruları yanlış çözmüştür. Tek sayıda soru çözen öğrencilerin sayısı en az kaçtır?

$
\textbf{a)}\ 18
\qquad\textbf{b)}\ 24
\qquad\textbf{c)}\ 26
\qquad\textbf{d)}\ 28
\qquad\textbf{e)}\ \text{Hiçbiri}
$


17
$B$ açısı dik olan $ABC$ üçgeninin $A$ ve $C$ köşeleri, $B$ merkezli $20$ birim yarıçaplı çeyrek çemberin üzerindedirler. Bu çeyrek çemberin iç bölgesine $[AB]$ çaplı bir yarım çember çizilmiştir. $C$ noktasından yarım çembere çizilen teğetin değme noktası $B$’den farklı bir $D$ noktası ve $CD$ doğrusunun çeyrek çemberi kestiği nokta $F$ dir. Buna göre $|FD|$ kaç birimdir?

$
\textbf{a)}\ 1
\qquad\textbf{b)}\ \dfrac{5}{2}
\qquad\textbf{c)}\ 3
\qquad\textbf{d)}\ 4
\qquad\textbf{e)}\ 5
$


18
Kaç tane $n$ pozitif tam sayısı için $\sqrt{n+\sqrt{n+\sqrt{n+\sqrt{n}}}}$ tam sayıdır?

$
\textbf{a)}\ 1
\qquad\textbf{b)}\ 2
\qquad\textbf{c)}\ 3
\qquad\textbf{d)}\ \text{Sonsuz}
\qquad\textbf{e)}\ \text{Hiçbiri}
$


19
$f:\left ( 0,\infty  \right )\rightarrow \left ( 0,\infty  \right )$ fonksiyonu her $x,y \in (0,\infty)$ için, $$10\cdot \dfrac{x+y}{xy}=f\left ( x \right )\cdot f\left ( y \right )-f\left ( xy \right )-90$$ denklemini sağlıyorsa, $f\left ( \dfrac{1}{11} \right )$ kaçtır?

$
\textbf{a)}\ 1
\qquad\textbf{b)}\ 11
\qquad\textbf{c)}\ 21
\qquad\textbf{d)}\ 31
\qquad\textbf{e)}\ \text{Tek türlü bulunamaz}
$


20
$a_{1},a_{2},a_{3},\dots,a_{2008}$ tam sayılarından her biri en az $1$ en çok ise $5$ tir. $\left( a_{n},a_{n+1} \right)$ ikilisine, $a_{n}<a_{n+1}$ ise artan ikili, $a_{n}>a_{n+1}$ ise azalan ikili diyelim. Dizideki artan ikili sayısı $103$ tane ise azalan ikili sayısı en az kaçtır?

$
\textbf{a)}\ 21
\qquad\textbf{b)}\ 24
\qquad\textbf{c)}\ 36
\qquad\textbf{d)}\ 102
\qquad\textbf{e)}\ \text{Hiçbiri}
$


21
$ABC$ dik üçgeninde $m\left ( \widehat{A} \right )=90^{\circ}$ olsun. $P\in[AC] , Q\in[BC] , R\in[AB]$ olacak şekildeki $APQR$ karesinin alanı $9, N,K\in[BC] , M\in[AB]$ ve $L\in[AC]$ olacak şekildeki $KLMN$ karesinin alanı da $8$ ise $|AB|+|AC|$ kaçtır?

$
\textbf{a)}\ 8
\qquad\textbf{b)}\ 10
\qquad\textbf{c)}\ 12
\qquad\textbf{d)}\ 14
\qquad\textbf{e)}\ 16
$


22
Kaç $a\geq b$ şartını sağlayan $(a,b)$ pozitif tam sayı ikilisi için $a^2+b^2$ ifadesi $a^3+b$ ve $a+b^3$ ifadelerini böler?

$
\textbf{a)}\ 0
\qquad\textbf{b)}\ 1
\qquad\textbf{c)}\ 2
\qquad\textbf{d)}\ 3
\qquad\textbf{e)}\ \text{Sonsuz sayıda}
$


23
$a,b,c,d$ gerçel sayıları $a^2+b^2+c^2+d^2-ab-bc-cd-d+\dfrac{2}{5}=0$ eşitliğini sağlıyorsa $a$ kaçtır?

$
\textbf{a)}\ \dfrac{2}{3}
\qquad\textbf{b)}\ \dfrac{\sqrt{2}}{3}
\qquad\textbf{c)}\ \dfrac{\sqrt{3}}{2}
\qquad\textbf{d)}\ \dfrac{1}{5}
\qquad\textbf{e)}\ \text{Hiçbiri}
$


24
$a_{1},a_{2},a_{3},a_{4},a_{5}$ ve $a_{6}$ sayıları $\left \{ -1,0,1 \right \}$ kümesinin elemanları olmak üzere,$$a_{1}\cdot 5^{1}+a_{2}\cdot 5^{2}+a_{3}\cdot 5^{3}+a_{4}\cdot 5^{4}+a_{5}\cdot 5^{5}+a_{6}\cdot 5^{6}$$ ifadelerine bakalım.Bu ifadelerin kaç tanesi negatif değer alır?

$
\textbf{a)}\ 121
\qquad\textbf{b)}\ 224
\qquad\textbf{c)}\ 275
\qquad\textbf{d)}\ 364
\qquad\textbf{e)}\ 375
$


25
$O$ merkezli çemberde $[AB]$ çaptır.$C$ ve $D$ noktaları çember üzerinde $[AB]$ çapına göre farklı yarım çemberler üzerindedir.$B$ den $[CD]$ ye inen dikmenin ayağı $H$ olsun.$|AO|=13,|AC|=24$ ve $|HD|=12$ olduğuna göre, $DCB$ açısı kaç derecedir?

$
\textbf{a)}\ 30
\qquad\textbf{b)}\ 45
\qquad\textbf{c)}\ 60
\qquad\textbf{d)}\ 75
\qquad\textbf{e)}\ 80
$


26
$$A=\dfrac{2^{2}+3\cdot 2+1}{3!\cdot 4!}+\dfrac{3^{2}+3\cdot 3+1}{4!\cdot 5!}+\dfrac{4^{2}+3\cdot 4+1}{5!\cdot 6!}+\cdots +\dfrac{10^{2}+3\cdot 10+1}{11!\cdot 12!} $$ toplamı için $11!\cdot12! \cdot A$ sayısını $11$ e bölünce kalan nedir?

$
\textbf{a)}\ 0
\qquad\textbf{b)}\ 1
\qquad\textbf{c)}\ 5
\qquad\textbf{d)}\ 8
\qquad\textbf{e)}\ 10
$


27
Bir üçgenin açıları olan $\alpha ,\beta ,\gamma $ bir aritmetik dizi oluşturuyorlar. $\sin 20\alpha$, $\sin 20\beta $ ve $\sin 20\gamma$ da aritmetik dizi oluşturuyorsa, $\alpha$ kaç farklı değer alabilir?

$
\textbf{a)}\ 1
\qquad\textbf{b)}\ 2
\qquad\textbf{c)}\ 3
\qquad\textbf{d)}\ 4
\qquad\textbf{e)}\ \text{Hiçbiri}
$


28
$8\times8$ bir satranç tahtasının bir köşesinden bir birim kare kesilip atıldığında kalan şekli eşit alanlı üçgenlere bölmek için en az kaç üçgen gerekir?

$
\textbf{a)}\ 17
\qquad\textbf{b)}\ 19
\qquad\textbf{c)}\ 20
\qquad\textbf{d)}\ 21
\qquad\textbf{e)}\ \text{Hiçbiri}
$


29
$ABCD$ konveks dörtgeninde $[AB]$ ile $[CD]$ paralel değildir. $[AD]$ nin orta noktası $E , [BC]$ nin orta noktası $F$ dir. $|CD|=12 , |AB|=22$ ve $|EF|=x$ olduğuna göre, $x$ in alabileceği tam sayı değerlerin toplamı kaçtır?

$
\textbf{a)}\ 110
\qquad\textbf{b)}\ 114
\qquad\textbf{c)}\ 118
\qquad\textbf{d)}\ 121
\qquad\textbf{e)}\ \text{Hiçbiri}
$


30
İlk terimi pozitif tam sayı olan bir dizide, her terime en büyük rakamı eklenerek bir sonraki terim elde ediliyor. Bu dizinin en çok kaç ardışık terimi tek sayı olabilir?

$
\textbf{a)}\ 2
\qquad\textbf{b)}\ 3
\qquad\textbf{c)}\ 4
\qquad\textbf{d)}\ 5
\qquad\textbf{e)}\ 6
$


31
$xy=1$ koşulunu sağlayan her $x,y$ gerçel sayıları için, $$\left ( (x+y)^{2}+4 \right )\left ( (x+y)^{2}-2 \right )\geq A.(x-y)^{2}$$
eşitsizliği sağlanıyorsa, $A$ sayısının alabileceği en büyük değer aşağıdakilerden hangisidir?

$
\textbf{a)}\ 12
\qquad\textbf{b)}\ 14
\qquad\textbf{c)}\ 16
\qquad\textbf{d)}\ 18
\qquad\textbf{e)}\ 20
$


32
$n\geq4$ kişilik bir partide, her $3$ kişinin tam olarak $1$ ortak arkadaşı varsa $n$ kaç farklı değer alabilir?

$
\textbf{a)}\ 1
\qquad\textbf{b)}\ 2
\qquad\textbf{c)}\ 4
\qquad\textbf{d)}\ \text{Sonsuz çoklukta}
\qquad\textbf{e)}\ \text{Hiçbiri}
$


33
$E$ noktası $ABCD$ eşkenar dörtgeninin iç bölgesinde olmak üzere, $|AE|=|EB|$ , $m ( \widehat{EAB} )=12^{\circ}$ ve $m ( \widehat{DAE} )=72^{\circ}$ dir. Buna göre, $m (\widehat{CDE})$ kaç derecedir?

$
\textbf{a)}\ 64
\qquad\textbf{b)}\ 66
\qquad\textbf{c)}\ 68
\qquad\textbf{d)}\ 70
\qquad\textbf{e)}\ 72
$


34
Ondalık yazılımında $0$ dan farklı olan tüm rakamlarına bölünen pozitif bir tam sayıya "özel sayı" diyelim. En fazla kaç ardışık özel sayı vardır?

$
\textbf{a)}\ 9
\qquad\textbf{b)}\ 10
\qquad\textbf{c)}\ 12
\qquad\textbf{d)}\ 13
\qquad\textbf{e)}\ 14
$


35
$x$ bir gerçel sayı ise $\sqrt{x^2-6x+13}+\sqrt{x^2-14x+58}$ ifadesinin alabileceği en küçük değer kaçtır?

$
\textbf{a)}\ \sqrt{39}
\qquad\textbf{b)}\ 6
\qquad\textbf{c)}\ \dfrac{43}{6}
\qquad\textbf{d)}\ 2\sqrt{2}+\sqrt{13}
\qquad\textbf{e)}\ \text{Hiçbiri}
$


36
Üst üste dizilmiş $2008$ madeni paranın bulunduğu bir beyaz masa ve iki boş siyah masadan başlayarak, her hamlede herhangi bir masadaki en üst pozisyondaki parayı alıp herhangi bir boş masaya veya herhangi bir masadaki en üst pozisyona yerleştirerek, en az kaç hamlede tüm paralar beyaz masaya ters sırada yerleştirilebilir?

$
\textbf{a)}\ 6016
\qquad\textbf{b)}\ 6017
\qquad\textbf{c)}\ 6022
\qquad\textbf{d)}\ 6023
\qquad\textbf{e)}\ 6024
$



Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal