Bu soruyu forumda çözmüştüm diye hatırlıyorum. Ben de bulamadım :) Trigonometri kullanmadığım aşağıdaki çözümüm biraz daha kısa ve zarif olabilir.
Çözüm: $ABC$ üçgeninin diklik merkezi $H$, ağırlık merkezi (centroid) $G$ olsun. $|AF|=3|GF|$ özelliği vardır. Ayrıca diklik merkezi özelliği olarak $|AD|\cdot |HD| = |BD|\cdot |CD|$ eşitliği geçerlidir. İspatı için Diklik merkezi-Problem 8 (https://geomania.org/forum/index.php?topic=69.0) bağlantısına bakılabilir. Buna göre, $\tan B \cdot \tan C = \dfrac{|AD|}{|BD|}\cdot \dfrac{|AD|}{|CD|} = \dfrac{|AD|}{|HD|} $ olur. Ayrıca $GH$, $ABC$ üçgeninin Euler doğrusudur.
(https://geomania.org/forum/index.php?action=dlattach;topic=8310.0;attach=16424;image)
Dolayısıyla
$$ GH \parallel BC \iff \dfrac{|AF|}{|GF|} = \dfrac{|AD|}{|HD|} \iff |AD| = 3|HD| \iff \tan B \cdot \tan C = 3 $$
elde edilir.