Geomania.Org Forumları

Matematik Eğitimi => Matematik Eğitimi => Konuyu başlatan: Lokman Gökçe - Nisan 07, 2017, 06:01:29 ös

Başlık: simetrik grupta fonksiyon sayısı
Gönderen: Lokman Gökçe - Nisan 07, 2017, 06:01:29 ös
Problem (L. Gökçe): $S_9$ simetrik grubunda uzunluğu $3$ olan üç ayrık devrin çarpımı biçiminde yazılabilen kaç farklı fonksiyon vardır? (Yani $f=(abc)(def)(ghi)$ biçiminde ve $f \in S_9$ olmalıdır.)

$
\textbf{a)}\ 2240
\qquad\textbf{b)}\ 1680
\qquad\textbf{c)}\ 840
\qquad\textbf{d)}\ 560
\qquad\textbf{e)}\ 280
$
Başlık: Ynt: simetrik grupta fonksiyon sayısı
Gönderen: Lokman Gökçe - Nisan 09, 2017, 09:42:40 ös
Yanıt: $\boxed{A}$

$S_9$ ile $A=\{ 1,2,3,4,5,6,7,8,9 \}$ kümesi üzerindeki tüm permütasyon fonksiyonlarının kümesini gösteriyoruz. Bu küme, fonksiyonların bileşke işlemine göre Abelyen olmayan bir gruptur. $f=(abc)(def)(ghi)$ biçimindeki bir permütasyon fonksiyonu için

$a,b,c$ değerlerini $\dbinom{9}{3}$ kombinasyonuyla,
$d,e,f$ değerlerini $\dbinom{6}{3}$ kombinasyonuyla,
$g,h,i$ değerlerini $\dbinom{3}{3}$ kombinasyonuyla

seçebiliriz. Ancak $f=(def)(abc)(ghi)$  ile $f=(abc)(def)(ghi)$ aynı gösterimlerdir. Bu üçlü grupların sıralanışı önemsiz olduğundan $3!$ ile bölmeliyiz. $$ \dfrac{\binom{9}{3}\binom{6}{3}\binom{3}{3}}{3!} = 280 $$ olur.

Fakat bir $a,b,c$ üçlüsü ile $(abc)$ ve $(acb)$ gibi iki farklı devir yazılabilir. Dolayısıyla her üç devir için $2\cdot 2 \cdot 2 = 2^3$ ile çarparız. Cevap $$280 \cdot 8 = 2240$$ bulunur.
SimplePortal 2.3.3 © 2008-2010, SimplePortal