Geomania.Org Forumları
Fantezi Cebir => Kombinatorik => Konuyu başlatan: Lokman Gökçe - Kasım 17, 2011, 10:34:46 ös
-
SORU: 10 siyah, 4 beyaz özdeş boncuk bir halkaya dizilecektir. Herhangi iki beyaz boncuk arasında en az 2 siyah boncuk olması şartıyla kaç farklı dizilim yapılabilir?
akşam vakti böyle bir problem kurguladım. problemin anlaşılması açısından çözümde dikkat edilecek bazı noktaları açayım: evvela halkanın alt - üst simetrisi olmasından dolayı simetri yokken hesaplananların yarısı gidebilir. (ama belki gitmeyebilir de) ayrıca beyazların arasına dağıtılan 10 siyah top ile ilgili şu örneğe bakalım: siyahlar 3 + 3 + 2 + 2 şeklindeyse bununla 3 + 2 + 2 + 3 durumu aynı olacaktır. ya da bir başka örnek: 2 + 2 + 2 + 4 durumu ile 4 + 2 + 2 + 2, 2 + 4 + 2 + 2, 2 + 2 + 4 + 2 durumları hep aynı dizilişi gösterecektir.
3 + 3 + 2 + 2, 3 + 2 + 3 + 2, 4 + 2 + 2 + 2 parçalanmasından ibaret 3 çözüm olabilir. cevabın 3 olduğunu düşünüyorum. problemde toplam 14 tane top varken sonuç böyle küçük bir sayı olabilir mi, ne dersiniz :)
-
Lokman Hocam, cevap 3'tür bence de. Eğer her beyaz arasında en az 1 siyah bulunacak deseydik ne olurdu acaba? :=)