Teorem: $f$ ve $g$, $[a,b]$ kapalı aralığı üzerinde sürekli iki fonksiyon olsun. Bu durumda
$$ \left(\int\limits_{a}^{b}f(t)g(t)dt \right)^2 \leq \int\limits_{a}^{b}f^2(t)dt \int\limits_{a}^{b}g^2(t)dt $$
eşitsizliği vardır. Bu eşitsizlik Cauchy-Schwarz İntegral Eşitsizliği olarak bilinir.
İspat: Her $x$ gerçel sayısı için $ 0 \leq (xf(t)+g(t))^2 $ dir. Her iki tarafın $[a,b]$ aralığı üzerinden integralini alıp
$0 \leq \int\limits_{a}^{b}(xf(t)+g(t))^2 dt = x^2\int\limits_{a}^{b}f^2(t)dt + 2x\int\limits_{a}^{b}f(t)g(t)dt + \int\limits_{a}^{b}g^2(t)dt =Ax^2+Bx+C$ diyelim. Burada
$$A=\int\limits_{a}^{b}f^2(t)dt , \quad B=2\int\limits_{a}^{b}f(t)g(t)dt, \quad C=\int\limits_{a}^{b}g^2(t)dt $$
dir. Her $x$ gerçel sayısı için $0 \leq Ax^2+Bx+C \Longleftrightarrow \Delta = B^2 - 4AC \leq 0$ dır. Burada $A,B,C$ yerine tekrar integral eşitliklerini yazarsak
$$ \left(\int\limits_{a}^{b}f(t)g(t)dt \right)^2 \leq \int\limits_{a}^{b}f^2(t)dt \int\limits_{a}^{b}g^2(t)dt $$
sonucuna ulaşılır.
Ayrıca C-S İntegral eşitsizliği $\mathbb R^n$ nin bir alt bölgesinde tanımlı ve sürekli fonksiyonlar için yazılırsa, çok katlı integrallerde de geçerli olduğu görülebilir. Bunun ispatı da, yukarıda verdiğimiz gibi yapılır.