Gönderen Konu: Tübitak Lise 1. Aşama 2018 Soru 31  (Okunma sayısı 1111 defa)

Çevrimdışı AtakanCİCEK

  • G.O Demirbaş Üye
  • ******
  • İleti: 257
  • Karma: +4/-0
  • Manisa
Tübitak Lise 1. Aşama 2018 Soru 31
« : Aralık 02, 2018, 04:24:20 ös »
$0<x\leq {1}$ olmak üzere, $\sqrt{1+\frac{4}{x}}-\sqrt{1-x}$ ifadesinin alabileceği en küçük değer nedir ?
$\textbf{a)}\ 1 \qquad\textbf{b)}\ 2  \qquad\textbf{c)}\ 3-\frac{1}{\sqrt{2}} \qquad\textbf{d)}\ \sqrt{5} \qquad\textbf{e)}\ \text{Hiçbiri}$
Bir matematikçi sanmaz fakat bilir, inandırmaya çalışmaz çünkü ispat eder.
    Boğaziçi Üniversitesi - Matematik

Çevrimdışı AtakanCİCEK

  • G.O Demirbaş Üye
  • ******
  • İleti: 257
  • Karma: +4/-0
  • Manisa
Ynt: Tübitak Lise 1. Aşama 2018 Soru 31
« Yanıtla #1 : Aralık 02, 2018, 04:45:17 ös »
Yanıt:$\boxed{B}$
$(\sqrt{1+\frac{4}{x}}-\sqrt{1-x})'=0$ denklemini çözüp ekstremum değerleri bulalım.
Türevi alırsak;
$\frac{-2}{x^2\sqrt{1+\frac{4}{x}}}+\frac{1}{2\sqrt{1-x}}=0$ denklemini elde ederiz.
İfadeyi düzenleyip her tarafın karesini aldığımızda
$x^4+4x^3+16x-16=0$ denklemi elde edilir.
$(x^2+ax+b).(x^2+cx+d)=x^4+4x^3+16x-16$ yazıp  katsayıları eşitlersek
$a+c=4$
$ac+b+d=0$
$ad+bc=16$                     
$bd=-16$  denklemlerinden $a=0$,$b=4$,$c=4$ ve $d=-4$ bulunur.
$(x^2+4).(x^2+4x-4)=0$ elde ettik.
Sol tarafında diskriminantı $0$ dan küçük olduğundan reel kökü yoktur.
$x^2+4x-4$ ifadesindeki kökler  $x=\frac{-4+\sqrt{32}}{2}$ veya $x=\frac{-4-\sqrt{32}}{2}$ bulunur.
$0<x\leq 1$ olduğundan   $x=\frac{-4+\sqrt{32}}{2}$ yani $x=2\sqrt{2}-2$ olmalıdır.
$1+\frac{4}{x}=1+\frac{2}{\sqrt{2}-1}$ yani $3+2\sqrt{2}$ ve $1-x=3-2\sqrt{2}$ olduğundan $\sqrt{1+\frac{4}{x}}-\sqrt{1-x}$ ifadesi düzenlendiğinde $\sqrt{2}+1-(\sqrt{2}-1)=2$ olduğundan
 $0<x\leq{1}$ için $\sqrt{1+\frac{4}{x}}-\sqrt{1-x}\geq{2}$ bulunur.

« Son Düzenleme: Mart 18, 2019, 02:11:49 ös Gönderen: AtakanCİCEK »
Bir matematikçi sanmaz fakat bilir, inandırmaya çalışmaz çünkü ispat eder.
    Boğaziçi Üniversitesi - Matematik

Çevrimdışı Squidward

  • G.O Sevecen Üye
  • ****
  • İleti: 85
  • Karma: +3/-0
Ynt: Tübitak Lise 1. Aşama 2018 Soru 31
« Yanıtla #2 : Aralık 02, 2018, 07:04:12 ös »
Türev kullanmadan bir çözüm vereyim ben de:

İfadenin pozitif olduğu barizdir. İfadenin karesini alırsak ve ifadeye $A$ dersek $A^2 = 2 + \frac{4}{x} - x - 2 \sqrt{\frac{4}{x} - x -3}$ olur. Kare içindeki ifadeye $u$ dersek ifade $A^2 = u + 5 - 2\sqrt{u}$ olur. Minimum bulma adına tam kare oluşturursak $A^2 = (\sqrt{u} - 1)^2 + 4$ olur ifademiz ve minimum olması için $\sqrt{u} = 1$ olmalı. Kontrol edilirse $x$'in $(0, 1]$ aralığında olduğu görülür, ifade pozitif olduğundan $\min{A} = 2$dir.
ibc

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal