Gönderen Konu: Tübitak Lise 1. Aşama 2004 Soru 32  (Okunma sayısı 1759 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Tübitak Lise 1. Aşama 2004 Soru 32
« : Mayıs 08, 2014, 11:41:09 ös »
$a$, $b$, $c$, $d$ farklı gerçel sayılar olmak üzere, $a$ ve $b$, $x^2 - 2cx - 5d = 0$ denkleminin, $c$ ve $d$ ise, $x^2 - 2ax - 5b = 0$ denkleminin kökleriyse, $a + b + c + d$ nedir?

$
\textbf{a)}\ 10
\qquad\textbf{b)}\ 15
\qquad\textbf{c)}\ 20
\qquad\textbf{d)}\ 25
\qquad\textbf{e)}\ 30
$

Çevrimdışı ArtOfMathSolving

  • G.O Efsane Üye
  • *******
  • İleti: 423
  • Karma: +4/-8
Ynt: Tübitak Lise 1. Aşama 2004 Soru 32
« Yanıtla #1 : Mayıs 29, 2016, 02:23:32 ös »
Yanıt:$\boxed{E}$

Vieta formüllerinden $2c=a+b$,  $2a=c+d$  ve $-5d=ab$,  $5b=cd$ bulunur. $1.$ denklemden $a+c=b+d$ buluruz yani $2(a+c)$ yi bulmamız yeterli . $2.$ denklemden $d$ yi yalnız bırakırsak,

$d=-\dfrac{ab}{5}$ , $d=-\dfrac{5b}{c} \Rightarrow ac=25$ Buluruz şimdi de $x=a,x=c$ yazıp alt alta toplayalım,

$a^2+c^2-4ac-5(b+d)=0$ $b+d=a+c$ yazıp düzenlersek,

$(a+c+10)(a+c-15)=0$ elde edilir buradan $2(a+c)=30$ bulunur.

« Son Düzenleme: Mayıs 29, 2016, 03:49:52 ös Gönderen: ArtOfMathSolving »
Sıradan bir matematikçi...

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal