Gönderen Konu: Tübitak Lise 1. Aşama 2007 Soru 26  (Okunma sayısı 1902 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1421
  • Karma: +12/-0
Tübitak Lise 1. Aşama 2007 Soru 26
« : Mayıs 07, 2014, 03:26:17 ös »
$c, a$ ve $b$ nin pozitif ortak katlarının en küçüğünü ve $d$ de, ortak bölenlerinin en büyüğünü göstermek üzere, $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}=1$$ eşitliğini sağlayan kaç tane $(a,b)$ pozitif tamsayı ikilisi vardır?

$
\textbf{a)}\ 6
\qquad\textbf{b)}\ 5
\qquad\textbf{c)}\ 4
\qquad\textbf{d)}\ 3
\qquad\textbf{e)}\ 2
$

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3199
  • Karma: +22/-0
  • İstanbul
Ynt: Tübitak Lise 1. Aşama 2007 Soru 26
« Yanıtla #1 : Temmuz 17, 2014, 06:50:58 ös »
Yanıt: $\boxed{B}$

$d=(a,b)$ ise $a=dx$, $b=dy$ ve $(x,y)=1$ olacak şekilde $x,y$ pozitif tamsayıları vardır. Bu halde $c=dxy$ dir. Bu değerleri verilen denklemde yazalım: $ \dfrac{1}{dx} +\dfrac{1}{dy} + \dfrac{1}{d} + \dfrac{1}{dxy} = 1$ olup payda eşitledikten sonra $d$ yi yalnız bırakırsak $d=1+\dfrac{x+y+1}{xy}$ dir. Buradan $d>1$ olduğu görülüyor. $x=y=1$ özel halini incelersek $d=4$ bulunur. Bu halde $(a,b)=(4,4)$ çözümüne ulaşırız. Şimdi simetriden dolayı $1 \leq x < y $ kabul edebiliriz. $d=1+\dfrac{1}{x}+ \dfrac{1}{y}+ \dfrac{1}{xy} $ ifadesi $x=1$ ve $y=2$ için maksimum değerine ulaşır. Bu değerleri yazarsak $d=1+\dfrac{1}{1}+ \dfrac{1}{2}+ \dfrac{1}{2} $ olup $d \leq 3$ buluruz.

Açıkça $d=3$ durumu yalnızca $x=1$, $y=2$ iken vardır. Buradan $(a,b)=(3,6),(6,3)$ çözümleri elde edilir.

$d=2$ durumunda $2=1+\dfrac{x+y+1}{xy}$ denkleminden $xy-x-x=1$ olur. Her iki tarafa $1$ eklersek $(x-1)(y-1)=2$ elde edilir. Bu denklemin çözümü $x=2$, $y=3$ tür. Bu halde $(a,b)=(4,6),(6,4)$ çözümlerine ulaşılır. Toplamda $5$ tane $(a,b)$ çözüm çifti bulunur.
« Son Düzenleme: Temmuz 19, 2014, 09:07:29 öö Gönderen: geo »
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal