Gönderen Konu: Tübitak Lise 1. Aşama 2003 Soru 25  (Okunma sayısı 1730 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Tübitak Lise 1. Aşama 2003 Soru 25
« : Mayıs 07, 2014, 12:47:45 öö »
Dar açılı bir $ABC$ üçgeninde, $[AB]$ nin orta noktası $D$, çevrel çemberin merkezi $O$ dur. $ADO$ üçgeninin çevrel çemberi, $[AC]$ yi $A$ ve $E$ noktalarında kesiyor. $|AE|=7$, $|DE|=8$ ve $m(\widehat{AOD}) = 45^\circ$ olduğuna göre $ABC$ üçgeninin alanı nedir?

$
\textbf{a)}\ 56\sqrt 3
\qquad\textbf{b)}\ 56 \sqrt 2
\qquad\textbf{c)}\ 50 \sqrt 2
\qquad\textbf{d)}\ 84
\qquad\textbf{e)}\ \text{Hiçbiri}
$

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Ynt: Tübitak Lise 1. Aşama 2003 Soru 25
« Yanıtla #1 : Ocak 02, 2015, 04:52:28 ös »
Yanıt: $\boxed{B}$

$AO=OB$ olduğu için $OD \perp AB$ dir.
$ADOE$ kirişler dörtgeni olduğu için $\angle AEO = 90^\circ$ ve $\angle AED = \angle AOD = 45^\circ$ dir.
$AO=OC$ ve $OE \perp AC$ olduğu için $AE=EC$ dir.
Bu durumda, $[ABC] = 4 \cdot [ADE] = 4 \cdot \dfrac 12 \cdot DE \cdot AE \cdot \sin \angle AED = 2 \cdot 8 \cdot 7 \cdot \dfrac {\sqrt 2}{2}=56\sqrt 2$.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal