Gönderen Konu: Tübitak Lise 1. Aşama 2000 Soru 34  (Okunma sayısı 2192 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Tübitak Lise 1. Aşama 2000 Soru 34
« : Nisan 26, 2014, 06:29:25 ös »
Aşağıdaki önermelerden hangisi, en az bir $p$ asal sayısı için doğru değildir?

$ \textbf{a)}$ $\begin{array}[t]{l} x^2 +x + 3 \equiv 0 \pmod p \text{ denkliğinin çözümü varsa},\\ x^2+x+25 \equiv 0 \pmod p \text{ denkliğinin de çözümü vardır}.\end{array}$

$\textbf{b)}$ $\begin{array}[t]{l} x^2 +x + 3 \equiv 0 \pmod p \text{ denkliğinin çözümü yoksa},\\ x^2+x+25 \equiv 0 \pmod p \text{ denkliğinin de çözümü yoktur}.\end{array}$

$\textbf{c)}$ $\begin{array}[t]{l} x^2 +x + 25 \equiv 0 \pmod p \text{ denkliğinin çözümü varsa},\\ x^2+x+3 \equiv 0 \pmod p \text{ denkliğinin de çözümü vardır}.\end{array}$

$\textbf{d)}$ $\begin{array}[t]{l} x^2 +x + 25 \equiv 0 \pmod p \text{ denkliğinin çözümü yoksa},\\ x^2+x+3 \equiv 0 \pmod p \text{ denkliğinin de çözümü yoktur}.\end{array}$

$\textbf{e)}$ $\text { Hiçbiri}$

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Ynt: Tübitak Lise 1. Aşama 2000 Soru 34
« Yanıtla #1 : Nisan 26, 2014, 09:39:39 ös »
Yanıt: $\boxed{E}$

Denklikleri uzun uzun yazmak yerine şu tanımlamayı yapalım.
$x^2 + x + 3 \equiv 0 \pmod p$ denkliğinin $p$ asal sayısı için çözümü varsa, $X(p) = 1$; yoksa $X(p)=0$ olsun.
$x^2 + x + 25 \equiv 0 \pmod p$ denkliğinin $p$ asal sayısı için çözümü varsa, $Y(p) = 1$; yoksa $Y(p)=0$ olsun.

Cevabın $A$ olduğunu kabul edelim. Bu durumda öyle bir $p$ asal sayısı var ki, $X(p)=1$; ama $Y(p)=0$. Bu $p$ asal sayısı için, $D$ şıkkı da doğru olmuyor. Çünkü $Y(p)=0$ olmasına rağmen $X(p)\neq 0$.
Bu durum, diğer şıklar için de geçerli. Aslında, $A$ ile $D$ önermeleri, $B$ ile $C$ önermeleri karşıt ters.
Bir sorunun iki cevabı olmayacağı için, cevap $A,B,C,D$ şıklarından hiçbirisidir. $E$ deki şık da tam olarak bu anlama gelmektedir.
« Son Düzenleme: Haziran 12, 2016, 11:11:33 öö Gönderen: geo »

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Ynt: Tübitak Lise 1. Aşama 2000 Soru 34
« Yanıtla #2 : Nisan 26, 2014, 09:41:37 ös »
Aslında soru şunu soruyor. Öyle bir $p$ asal sayısı var mı ki,
$$x_2 + x+ 3 \equiv 0 \pmod p \text { ile } x_2 + x+ 25 \equiv 0 \pmod p$$ denkliklerinden birinin çözümü var, diğerinin yok.
$x^2 + x+ 3 \equiv 0 \pmod p$ denkliği için,
$$x_{1,2} = \dfrac{-1\pm \sqrt {-11}}{2} \pmod p.$$
$x^2 + x+ 25 \equiv 0 \pmod p$ denkliği için,
$$x_{1,2} = \dfrac{-1\pm \sqrt {-99}}{2} \pmod p.$$
Bu durumda $2^{-1}$, $\mod p$ de tanımlıysa;
$D_1^2 \equiv -11 \pmod p$ koşulunu sağlayan bir $D_1$ sayısı varsa, $x^2 + x + 3 \equiv 0 \pmod p$ denkliğinin bir çözümü vardır.
$D_2^2 \equiv -99 \pmod p$ koşulunu sağlayan bir $D_2$ sayısı varsa, $x^2 + x + 25 \equiv 0 \pmod p$ denkliğinin bir çözümü vardır.
Bu durumda $D_1$ ile $D_2$ arasında, $$D_2 \equiv \pm 3 D_1 \pmod p \text{ ve } 3^{-1}D_2 \equiv \pm D_1 \pmod p$$ bağıntıları vardır. Bu durumda, $D_1$ var olmasının $D_2$ varlığını gerektirmesi (ya da diğer ihtimaller) $3^{-1}$ in $\mod p$ de tanımlı olması ile alakası var.
Bir $a$ sayısı için $a^{-1} \pmod p$ nin tanımlı olması için gerek ve yeter koşul $(a,p)=1$ olmasıdır.
$p=2$ ve $p=3$ hariç tüm asal sayılar için $2^{-1}$ ile $3^{-1}$ tanımlıdır.
$p=2$ için, iki denkliğin de çözümü yoktur.
$p=3$ için, iki denkliğin de çözümü vardır.
Bu durumda, tüm $p$ asal sayıları için; ya iki denklemin de çözümü vardır, ya da iki denklemin de çözümü yoktur. Böylelikle, tüm şıklar doğru olmuş oldu. Doğru yanıt, şıklardan hiçbiri. Yani $E$.
« Son Düzenleme: Ağustos 12, 2014, 10:16:43 öö Gönderen: geo »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal