Gönderen Konu: Tübitak Lise 1. Aşama 1999 Soru 03  (Okunma sayısı 1859 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Tübitak Lise 1. Aşama 1999 Soru 03
« : Nisan 26, 2014, 05:36:25 ös »
En fazla $3, 5, 7$ ve $8$ top alabilen dört kutuya birbirinin aynı olan $19$ top kaç farklı şekilde dağıtılabilir?

$
\textbf{a)}\ 34
\qquad\textbf{b)}\ 35
\qquad\textbf{c)}\ 36
\qquad\textbf{d)}\ 40
\qquad\textbf{e)}\ \text{Hiçbiri}
$

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 1812
  • Karma: +8/-0
Ynt: Tübitak Lise 1. Aşama 1999 Soru 03
« Yanıtla #1 : Nisan 26, 2014, 08:27:13 ös »
$$\begin{array}{rcl}
3+5+7+8 &=& 23 \\
23 - 19 &=& 4
\end{array}$$
Bu sayılar da neyin nesi? Toplamda kutuların kapasitesi $23$, yerleştirilecek topların sayısı $19$. Kutuların dolu olduğunu varsayalım, bu durumda $4$ kutudan $4$ top çıkaracağız. Normalde bu işlem (tekrarlı kombinasyon) $$ { {4+4-1} \choose {4-1} } = { {7} \choose {3}} = 35$$ farklı şekilde yapılır. Kapasitesi $3$ olan kutudan $4$ top çıkaramadığımız için $(4,0,0,0)$ dağıtımını iptal ediyoruz. Bu durumda $35-1=34$ farklı dağıtım elde edilir.
« Son Düzenleme: Haziran 28, 2014, 06:12:38 ös Gönderen: geo »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal