Gönderen Konu: Tübitak Lise 1. Aşama 2009 Soru 22  (Okunma sayısı 2393 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1421
  • Karma: +12/-0
Tübitak Lise 1. Aşama 2009 Soru 22
« : Ocak 12, 2014, 08:47:43 ös »
Her $n \geq 0$ için, $a_{n+1} = a_{n}^{3} + a_{n}^{2} $ koşulunu sağlayan bir  $(a_{n})_{n=0}^{\infty }$ tam sayı dizisinin terimlerinin $11$ e bölümünden kalanların oluşturduğu kümenin en çok kaç elemanı vardır?

$
\textbf{a)}\ 2
\qquad\textbf{b)}\ 3
\qquad\textbf{c)}\ 4
\qquad\textbf{d)}\ 5
\qquad\textbf{e)}\ 6
$

Çevrimdışı muuurat

  • G.O Sevecen Üye
  • ****
  • İleti: 53
  • Karma: +2/-0
Ynt: Tübitak Lise 1. Aşama 2009 Soru 22
« Yanıtla #1 : Şubat 04, 2014, 03:01:22 ös »
a0=0,1,3,7 .için kümemiz 1 elemenlı oluyor.
a0=2 için 23+22denktir 1 (mod11) .....  kümemiz 2 elemanlı oluyor.
a0=4 için 43+42denktir 3 (mod 11)......kümemiz 2 elemanlı oluyor.
a0=5 için 53+52denktir 7 (mod 11)....... kümemiz 2 elemanlı oluyor.
a0=6 için 63+62denktir 10(mod11)
a1=10 için 103+102denktir 0(mod 11).....kümemiz 3 elemanlı oluyor.
a0=8 için 83+82denktir 4 (mod 11 )...... kümemiz 3 elemanlı oluyor.
a0=9 için 93+92denktir 7 (mod 11) ........ kümemiz 2 elemanlı oluyor.
« Son Düzenleme: Nisan 23, 2016, 12:56:30 ös Gönderen: geo »

Çevrimdışı math_tomas

  • G.O Yeni Üye
  • *
  • İleti: 7
  • Karma: +0/-0
Ynt: Tübitak Lise 1. Aşama 2009 Soru 22
« Yanıtla #2 : Şubat 07, 2014, 03:50:49 öö »
selam ...
    dogru cevap 6 degıl mı?
« Son Düzenleme: Nisan 23, 2016, 12:56:32 ös Gönderen: geo »

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3199
  • Karma: +22/-0
  • İstanbul
Ynt: Tübitak Lise 1. Aşama 2009 Soru 22
« Yanıtla #3 : Şubat 07, 2014, 04:37:51 ös »
cevap B seçeneğinde verilen 3 tür. Yalnız verilen çözümde küçük bir düzeltme yapmak lazım. a0 = 1 için a1 = 2, a3 = 12 = 1(mod 11), ... olduğundan a0 = 1 için kümemiz 2 elemanlı oluyor, 1 elemanlı değildir.
« Son Düzenleme: Nisan 23, 2016, 12:56:37 ös Gönderen: geo »
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal