Fantezi Cebir > Sayılar Teorisi

Asal, tam kare ve Wilson

(1/1)

Hüseyin Yiğit EMEKÇİ:
$p!+p$  ifadesini tam kare yapan tüm $p$ asal sayılarını bulunuz.

Hüseyin Yiğit EMEKÇİ:
Wilson Teoremi'nden $(p-1)!=-1 \pmod{p}$ olduğundan herhangi bir $k$  pozitif tam sayısı için

$$p!+p=p((p-1)!+1)\equiv 0 \pmod{p^2}$$
olduğunu söyleyebiliriz. Dolayısıyla
$$\dfrac{(p-1)!+1}{p}$$
ifadesini tam kare yapan $p$ asallarını bulmalıyız. Peki devamında nasıl ilerlemeliyiz? Yardımcı olursanız sevinirim.

Metin Can Aydemir:
$p=2,3$ için ifade tamkaredir. $p\geq 5$ için $x^2=p!+p$ olsun. $p$'nin $4k+1$ formatında olduğunu görmek kolaydır. $q$ asalı $p$'den küçük tek bir asal sayı olsun. $$x^2\equiv p!+p\equiv p\pmod{q}\implies \left(\frac{p}{q}\right)=1$$ elde edilir. $p\equiv 1\pmod{4}$ olduğundan karekalan kanunundan, $$\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)=1$$ bulunur. Yani $p$'den küçük her tek asal sayı $p$ modunda karekalandır. Hatta $p!\equiv 0\pmod{8}$ olduğundan $p\equiv x^2\equiv 1\pmod{8}$ olur, yani $2$ de karekalandır. $p$'den küçük her pozitif tamsayı, $p$'den küçük asal sayıların çarpımı olduğundan ve tüm bu asallar karekalan olduğundan $p$'den küçük tüm sayılar karekalan olmalıdır. Ancak bu mümkün değildir. Tam olarak yarısı karekalan olmalıdır.

Navigasyon

[0] Mesajlar

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
Tam sürüme git