Gönderen Konu: 2022 Antalya Matematik Olimpiyatı 2. Aşama Soru 16  (Okunma sayısı 661 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.569
  • Karma: +4/-0
2022 Antalya Matematik Olimpiyatı 2. Aşama Soru 16
« : Mayıs 16, 2024, 01:49:44 öö »


Şekilde $ABCD$ bir dikdörtgen ve $ADE$ bir eşkenar üçgendir. Eşit yarıçaplı büyük çemberler dikdörtgene ve eşkenar üçgene teğettir. Küçük çember ise büyük çemberlere ve dikdörtgene teğettir ve eşkenar üçgenin $E$ köşesi bu çember üzerindedir. Küçük çemberin yarıçapı $3$ ise büyük çemberlerin yarıçapı kaçtır?

$\textbf{a)}\ 4+\sqrt3  \qquad\textbf{b)}\ 5+2\sqrt3  \qquad\textbf{c)}\ 5+\sqrt3  \qquad\textbf{d)}\ 4+2\sqrt3  \qquad\textbf{e)}\ 3+3\sqrt3$

Çevrimdışı diktendik

  • G.O Bağımlı Üye
  • *****
  • İleti: 125
  • Karma: +0/-0
Ynt: 2022 Antalya Matematik Olimpiyatı 2. Aşama Soru 16
« Yanıtla #1 : Eylül 17, 2024, 07:15:26 ös »
$\boxed{D}$

Yarıçapı $3$ olan çemberin merkezi $O$, öteki cemberlerden $AB$'ye teğet olanın merkezi $O_1$ ve yarıçapı $r$ olsun. Bu çember $AB$'ye $T$'de teğet olmak üzere $ATO_1$ üçgeninde $15-75-90$'dan $AT=(2+\sqrt3)r$ olur. $BT=r$ olduğundan dikdörtgenin $AB=DC$ kenarları $(3+\sqrt3)r$ olur. $O$ merkezli çemberin $BC$'ye değme noktası $D$ olmak üzere $ED\cap AD=P$ ise, $AEP 30-60-90$ üçgeninde $EP=(3+\sqrt3)r-6$ olduğundan $AP=(\sqrt3+1)r-2\sqrt3$ olur. $O_1$ merkezli çemberin $BC$'te değme noktası $R$ olsun. $O$'dan $O_1R$'ye inen dikme ayağı $S$ olmak üzere $SOO_1$ üçgeninde pisagordan $$(r+3)^2=(r\sqrt3-2\sqrt3)^2+(r-3)^2\Rightarrow (r\sqrt3-2\sqrt3)^2=12r=3r^2-12r+12\Rightarrow r^2-8r+4=0$$ sonuç olarak $r\in\{4+2\sqrt3,4-2\sqrt3\}$ olur. $r>3$ olduğundan $r=4+2\sqrt3$ bulunur.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal