(Hüseyin Emekçi)
$a,b,c,x,n\in \mathbf{R^+}$ pozitif reeller, $i,j,s\geq 1$ tamsayılar, $n\geq 4$ ve $k\geq 2$ olmak üzere
$$\displaystyle \sum_{k=a}^c {\sqrt[\dbinom{
n-1}{2}]{\frac{xa^{4m(n-1)!} +4x}{\prod_{i+j+s=n}{(ia+jb+sc)}}}}\geq \sqrt[\dbinom {n-1}{2}]{4x}.2.\binom{n+1}{2}\frac{\left(\frac{a+b+c}{3}\right)^{4m-1}}{n(n+1)}$$
olduğunu gösteriniz.