Gönderen Konu: 2012 Antalya Matematik Olimpiyatı Soru 20  (Okunma sayısı 1701 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.560
  • Karma: +4/-0
2012 Antalya Matematik Olimpiyatı Soru 20
« : Ekim 31, 2022, 02:21:11 ös »
Kenar uzunlukları$,\ |AB|=43,\ |BC|=46,\ |AC|=49$ olan $ABC$ üçgeninde$,\ \widehat{A}$ açısının açıortayı $CB$'yi  $L$ noktasında$,\ \widehat{B}$ açısının açıortayı da $AC$'yi  $K$ noktasında kesiyor. $KB$ üzerinde $CM \perp KB$  olacak şekildeki $M$ noktası ve $AL$ üzerinde $CN \perp AL$  olacak şekildeki $N$ noktası için $|MN|$ uzunluğu kaçtır?

$\textbf{a)}\ 24  \qquad\textbf{b)}\ 25  \qquad\textbf{c)}\ 26  \qquad\textbf{d)}\ 27  \qquad\textbf{e)}\ 28$

Çevrimdışı diktendik

  • G.O Bağımlı Üye
  • *****
  • İleti: 122
  • Karma: +0/-0
Ynt: 2012 Antalya Matematik Olimpiyatı Soru 20
« Yanıtla #1 : Temmuz 07, 2024, 02:03:25 ös »
Yanıt : $\boxed{C}$

$CM\cap AB=D$ ve $CN\cap AB=E$ olsun. $MN$, $CDE$ üçgeninde orta tabandır. Buradan $|MN|=\frac{|DE|}{2}$ olur. $BCD$ üçgeninde açıortay aynı zamanda yükseklik olduğundan bu üçgen ikizkenardır ve $|AD|=3$ bulunur. Benzer şekilde $|BE|=6$ bulunur ve $|DE|=52$ olur. Cevabın $26$ olduğu anlaşılır.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal