Yanıt: $\boxed{A}$
$2^{23}+14!\equiv (2^6)^4\cdot 2^{-1} \equiv \dfrac{1}{2} \equiv 5 \pmod{9}$ ve
$2^{23}+14! \equiv (2^{10})^2\cdot2^3\equiv 8 \pmod{11}$ dir.Buna göre,
$87A86B79808 \equiv A+B+7 \equiv 5 \pmod{9} \Rightarrow A+B \equiv 7 \pmod{9} $ ve
$87A86B79808 \equiv A-B+2 \equiv 8 \pmod{11} \Rightarrow A-B \equiv 6 \pmod{11}$ dir.
Buradan $A=1 , B=6$ olup $A \cdot B=6$ dır.