$A$ açısı $ABC$ üçgenindeki açıların en küçüğüdür. $B$ ve $C$ noktaları bu üçgenin çevrel çemberini iki yaya ayırıyor. $U$, $B$ ve $C$ arasındaki, $A$ noktasını içermeyen yayın bir iç noktası olsun. $[AB]$ ile $[AC]$'nin orta dikmeleri $AU$ doğrusunu sırasıyla $V$ ve $W$ noktlarında kesiyor. $BV$ ile $CW$ doğruları da $T$ noktasında kesişiyor. $$|AU|=|TB|+|TC|$$ olduğunu gösteriniz.