İspat:
Kişilerin tuttukları balık sayıları birbirinden farklı olduğuna göre bu sayılara:
a < b < c < d < e < f < g diyelim. Bu sayılar pozitif tam sayılardır.
e + f + g ≥ 50 olduğunu kanıtlamamız gerek. O zaman olmayana ergi yöntemini kullanalım yani:
e + f + g ≤ 49 kabul edelim.
Öncelikle en yukarıdaki eşitsizlikten
f ≥ e +1
g ≥ e + 2 olur. O zaman eşitsizlikleri kombine edersek:
49 ≥ e + f + g ≥ e + e + 1 + e + 2
49 ≥ 3e + 3 olur. Buradan e tam sayısı için
e ≤ 15 olarak bulunur. O zaman yine en üstteki eşitsizlikten:
d ≤ 14 , c ≤ 13 , b ≤ 12 , a ≤ 11 olur. Bu eşitsizlikleri taraf tarafa toplarsak:
a + b + c + d ≤ 50 geliyor. (a + b + c + d) = 100 - (e + f + g) olduğundan:
100 - (e + f + g) ≤ 50
e + f + g ≥ 50 bulunuyor. Ama biz e + f + g ≤ 49 kabulünü yapmıştık, çelişki. Demek ki kabulümüz yanlışmış yani doğrusu:
e + f + g > 49 olur. Bu da demek oluyor ki:
e + f + g ≥ 50 olur. Demek ki en büyük üç sayının toplamı daima 50 den büyük eşit oluyormuş.