Gönderen Konu: Tübitak Ortaokul 2. Aşama 2020 Soru 1  (Okunma sayısı 325 defa)

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3122
  • Karma: +21/-0
  • İstanbul
Tübitak Ortaokul 2. Aşama 2020 Soru 1
« : Mart 06, 2021, 02:57:54 ös »
$2x^2 + y^2 + 7 = 2(x+1)(y+1)$ eşitliğini sağlayan tüm $(x,y)$ gerçel sayı ikililerini belirleyiniz.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3122
  • Karma: +21/-0
  • İstanbul
Ynt: Tübitak Ortaokul 2. Aşama 2020 Soru 1
« Yanıtla #1 : Mart 06, 2021, 03:07:25 ös »
Çözüm (Lokman GÖKÇE): Denklemi $x$'e göre ikinci dereceden bir denklem olarak düzenlersek
$$ 2x^2 - (2y+2)x +(y^2-2y+5)=0 \tag{1}$$
olur. $x,y \in \mathbb R$ olduğundan denklemin diskriminantı $\Delta = 4(y+1)^2 - 8(y^2-2y+5)\geq 0$ olmalıdır. Bu eşitsizliği düzenlersek $4(-y^2 +6y-9)\geq 0$ olup $(y-3)^2\leq 0$ elde edilir. Bu ise yalnızca $y=3$ durumunda sağlanır. Bu değeri $(1)$ de yazarsak
$$ 2x^2 - 8x+8 =0 $$
olup tek çözüm $x=2$ bulunur. Böylece verilen denklemin tek çözüm ikilisi $(x,y)=(2,3)$ bulunur.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı metonster

  • G.O Genel Moderator
  • G.O Efsane Üye
  • ********
  • İleti: 374
  • Karma: +7/-0
Ynt: Tübitak Ortaokul 2. Aşama 2020 Soru 1
« Yanıtla #2 : Mart 07, 2021, 12:43:49 ös »
Lokman hocamın aksine denklemi $y$'ye göre 2. denklem haline getirerek çözmeye çalışalım  ;D $$2x^2+y^2+7=2xy+2x+2y+2\Rightarrow y^2-y(2x+2)+2x^2-2x+5=0$$ olur. Burada Lokman hocam gibi diskriminant incelenerek sonuca ulaşılabilir fakat farklı bir bakış açısı olarak ifadeyi düzenlemeye çalışalım. $y^2-2y(x+1)+(x+1)^2$ olsaydı ifade tamkare olurdu ve çözüm elde edebilirdik, ifadeyi bu hale getirmeye çalışınca $$y^2-y(2x+2)+2x^2-2x+5=y^2-2y(x+1)+(x+1)^2+(x^2-4x+4)=(y-x-1)^2+(x-2)^2=0$$ olur ki her $a$ reel sayısı için $a^2\geq 0$'dır. Dolayısıyla $y-x-1=0$ ve $x-2=0$ olmalıdır. Buradan $(x,y)=(2,3)$ bulunur.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
SimplePortal 2.3.3 © 2008-2010, SimplePortal