Gönderen Konu: Uluslararası Matematik Olimpiyatı 2007 Soru 1  (Okunma sayısı 2997 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2492
  • Karma: +9/-0
Uluslararası Matematik Olimpiyatı 2007 Soru 1
« : Ekim 27, 2013, 02:21:18 ös »
$a_1,a_2,\dots,a_n$ gerçel sayıları verilmiş olsun. Her $i$ ($1 \leq i \leq n$) için, $$d_i = \max\{a_j : 1 \leq j \leq i \} - \min \{a_j : i \leq j \leq n\} $$ olarak tanımlayalım ve $$d = \max\{d_i : 1 \leq i \leq n\}$$ olsun.
  • Tüm $x_1 \leq x_2 \leq \dots \leq x_n$ gerçel sayıları için, \begin{equation} \max\{|x_i - a_i| : 1 \leq i \leq n\} \geq \frac d2 \tag{*} \end{equation} olduğunu kanıtlayınız.
  • $(*)$ da eşitliğin gerçekleşmesini sağlayan $x_1 \leq x_2 \leq \cdots \leq x_n$ gerçel sayılarının bulunduğunu gösteriniz.


Çevrimdışı KereMath

  • G.O Sevecen Üye
  • ****
  • İleti: 67
  • Karma: +2/-0
Ynt: Uluslararası Matematik Olimpiyatı 2007 Soru 1
« Yanıtla #1 : Temmuz 27, 2016, 10:12:14 ös »
Çözüm a
$ \max\{a_j : 1 \leq j \leq i \}$  ifadesi $\min \{a_j : i \leq j \leq n\}$ ifadesinden küçük ise d negatif olur dolayısıyla eşitsizlik doğrudur.
eğer böyle değilse
$a_\alpha = \max\{a_j : 1 \leq j \leq i \}$ ve $a_\beta = \min \{a_j : i \leq j \leq n\}$ diyelim.dolayısıyla $\alpha\le \beta$ elde ederiz bundan dolayı $x_\alpha\le x_\beta$ olduğunu da görürüz.
 $\begin{equation} \max\{|x_i - a_i| : 1 \leq i \leq n\} \geq \max \{{ { |x }_{ \alpha  }^{  } } -{ a }_{ \alpha  }^{  }|,|{ x }_{ \beta  }^{  }-{ a }_{ \beta  }^{  }|\} \tag{*} \end{equation}$ olduğunu görmek de zor olmasa gerek.
Ek olarak $d=a_\alpha-a_\beta$ olduğunu da biliyoruz.O zaman
$\begin{equation}\max \{{ { |x }_{ \alpha  }^{  } } -{ a }_{ \alpha  }^{  }|,|{ x }_{ \beta  }^{  }-{ a }_{ \beta  }^{  }|\} \tag{*} \end{equation}\ge \frac { a_\alpha-a_\beta }{ 2 }$
olduğunu ispatlamak yeterlidir.
i)$x_\alpha-a_\alpha\ge 0$   ise
$(x_\beta-a_\beta)-(x_\alpha-a_\alpha)=(x_\beta-x_\alpha)+(a_\alpha-a_\beta)\ge a_\alpha-a_\beta$ bundan dolayı
$(x_\beta-a_\beta)\ge \frac { a_\alpha-a_\beta }{ 2 } $ bu doğrudur.
ii)$x_\alpha-a_\alpha\le 0$ ise
 $(x_\beta-a_\beta)\ge 0$ olsun
olmasını aradığımız şey
$ \frac { a_\alpha-a_\beta }{ 2 }\ge a_\alpha-x_\alpha\ge 0$ ve $\frac { a_\alpha-a_\beta }{ 2 }\ge x_\beta-a_\beta \ge 0$ ifadelerinin aynı anda sağlanıp sağlanamayacağıdır.
taraf tarafa toplarsak
$a_\alpha-a_\beta \ge (a_\alpha-a_\beta)-(x_\alpha-x_\beta)$ oluyor.
elimizde $0\ge x_\beta-x_\alpha$ kalıyor ki bu da çelişki demektir.
$x_\beta-a_\beta\le 0$ ise
olmasını aradığımız şey
$ \frac { a_\alpha-a_\beta }{ 2 }\ge a_\alpha-x_\alpha\ge 0$ ve $\frac { a_\alpha-a_\beta }{ 2 }\ge a_\beta-x_\beta \ge 0$ ifadelerinin aynı anda sağlanıp sağlanmayacağıdır.
Ve bu iki sayı arasındaki farka bakacak olursak $(a_\alpha-a_\beta)+(x_\beta-x_\alpha) \ge a_\alpha-a_\beta$
ancak bu iki sayı arasındaki mümkün fark en fazla $ \frac { a_\alpha-a_\beta }{ 2 }$ olacağından ve
$ \frac { a_\alpha-a_\beta }{ 2 }\ge a_\alpha-a_\beta$ olamayacağından ötürü çelişki elde ederiz.
İspat bitti.
Kerem Recep Gür

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal