Gönderen Konu: Young Eşitsizliği {çözüldü}  (Okunma sayısı 2460 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3661
  • Karma: +23/-0
  • İstanbul
Young Eşitsizliği {çözüldü}
« : Mart 17, 2020, 04:12:24 ös »
Young Eşitsizliği: $p,q>1$ olmak üzere $\dfrac{1}{p}+\dfrac{1}{q}=1$ eşitliğini sağlayan her $p, q$ ve her $a,b>0$ sayısı için
$$ \dfrac{a^p}{p}+\dfrac{b^q}{q} \geq ab $$
eşitsizliğinin sağlandığını gösteriniz.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3661
  • Karma: +23/-0
  • İstanbul
Ynt: Young Eşitsizliği
« Yanıtla #1 : Mart 17, 2020, 04:14:37 ös »
Young Eşitsizliği'nin Konvekslik Kavramı İle İspatı: Logaritma fonksiyonunun pozitif gerçel sayılar kümesinde konkav fonksiyon olduğunu biliyoruz. Yani grafik üzerinden iki farklı nokta alıp bir doğru parçasıyla birleştirdiğimizde, bu doğru parçası fonksiyon grafiğinin altında kalacaktır. $x,y>0$ ve $0\leq t \leq 1$ için
$$t\log x + (1-t)\log y \leq \log (tx + (1-t)y)$$ veya $$  \log  \left( x^t y^{1-t}\right) \leq \log (tx + (1-t)y) $$ olur. $ t=\dfrac{1}{p}$ denirse $1-t=\dfrac{1}{q}$ olur. $x=a^p$ ve $y=b^q$ değişken değiştirmesi yapılırsa son eşitsizlikten $$ab \leq \dfrac{a^p}{p} + \dfrac{b^q}{q} $$ bulunur $\blacksquare$
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal