Gönderen Konu: Brezilya Iberoamerican TST 2024 #2  (Okunma sayısı 148 defa)

Çevrimdışı Hüseyin Yiğit EMEKÇİ

  • Geo-Maniac
  • ********
  • İleti: 795
  • Karma: +2/-0
Brezilya Iberoamerican TST 2024 #2
« : Ekim 12, 2024, 10:19:20 ös »
Dar açılı ve çeşitkenar olan $ABC$  üçgeninde $O$  çevrel merkezdir. $M$, $N$  ve $P$  noktaları ise sırasıyla $BC$, $CA$  ve $AB$  kenarlarının orta noktalarıdır. $A$ 'dan geçip $OM$  doğrusuna $O$ noktasında teğet olan $w$  çemberi, sırasıyla $AB$  ve $AC$  doğrularını ikinci kez $E$  ve $F$  noktalarında kesiyor. $EF$  doğru parçasının orta noktası $I$  olmak üzere $EF$  ile $NP$  doğrularının kesişim noktası $K$  dır. Buna göre $IMO$  üçgeninin ikizkenar olduğunu ve $AO=2\cdot IK$  bağıntısının sağlandığını gösteriniz.
''Uzman, çok dar bir alanda yapılabilecek tüm hataları yapmış kişidir.''   ~Niels Bohr

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: Brezilya Iberoamerican TST 2024 #2
« Yanıtla #1 : Ekim 19, 2024, 12:19:48 öö »
$AB > AC$, $\angle A= \alpha$, $\angle B = \beta$, $\angle C = \theta$ olsun.
$OF$ ile $BC$, $Q$ da kesişsin. $[BC$ üzerindeki $G$ noktası $FC=FG$ şartını sağlasın.

$\angle OAB = 90^\circ - \theta$, $\angle OAC = 90^\circ - \beta$.

Teğet-Kiriş açıdan $\angle FOM = \angle OAC = 90^\circ -\beta$. $\angle OQM = \beta$, $\angle OEB = \angle CFQ = \theta - \beta$ olacaktır.
$\angle COM = \alpha$, $\angle COQ = \alpha - (90^\circ- \beta) = \alpha + \beta - 90^\circ = 180^\circ - \theta - 90^\circ = 90^\circ - \theta$.

$CO = OB$, $\angle EBO = \angle FOC = 90^\circ - \theta$, $\angle OEB = \angle CFO = \theta - \beta$ olduğu için $\triangle EBO \cong \triangle FOC$. Dolayısıyla $OE = CF = GF$.

$\angle GCF = \angle CGF = \theta$, $\angle GQF = \beta$ olduğu için $\angle GFQ = \alpha$ dır.
Aynı zamanda $AEOF$ kirişler dörtgeninde $\angle EOF = 180^\circ - \angle EAF = 180^\circ - \alpha$ olduğu için $OE \parallel FG$ dir.
$OE=FG$ olduğu için $EOFG$ bir paralelkenardır. O halde, $OG$ ile $EF$ köşegenleri birbirini ortalayacaktır. Dolayısıyla köşegenler $I$ noktasında kesişecektir. Buradan $OI=IG$ elde edilir.

$\triangle OMG$ dik üçgeninde $I$ hipotenüsün orta noktası olduğu için $OI = MI$, dolayısıyla $\triangle IMO$ ikizkenar üçgen olacaktır. $\blacksquare$

Şimdi de $PN$ ile $AG$ doğruları $L$ noktasında kesişsin. $AL=LG$ ve $OI=IG$ olduğu için $LI \parallel AO$ olacaktır. Bu durumda $IL = \dfrac {AO}{2}$ olur.

$\angle LKI = \angle EKP = \angle CQF + \angle EFQ = \beta + 90^\circ - \theta = 90^\circ + \beta - \theta$.

$PN$ ile $AO$ doğruları $R$ de kesişsin.
$\angle KLI = \angle ARN = \angle APR + \angle PAR = \angle ABC + \angle BAO = \beta + 90^\circ - \theta = 90^\circ + \beta - \theta$.
O halde $KI=IL = \dfrac {AO}{2}$ dir. $\blacksquare$



« Son Düzenleme: Ekim 19, 2024, 12:32:53 öö Gönderen: geo »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal