Her $1\leq i\leq n$ için $\lambda_i$ pozitif, $a_i$ ise negatif olmayan reel sayılar (hepsi birden $0$'a eşit değil) olmak üzere $k\geq 2$ için
$$\sum_{cyc- j}{\dfrac{\sqrt[k-1]{\lambda_j^k}a_j+\sqrt[k-1]{\lambda_{j+1}^k}a_{j+1}+\cdots+\sqrt[k-1]{\lambda_{j-1}^k}a_{j-1}}{\lambda_ja_j+\lambda_{j+1}a_{j+1}+\cdots+\lambda_{j-1}a_{j-1}}}\geq \sqrt[k-1]{\sum\limits_{cyc}{\lambda_1}}$$
olduğunu gösteriniz.