Muirhead Eşitsizliği'ni kullanacak olursak
$$a_1^n+a_{2}^n+\cdots+a_{n-1}^n\geq \sum_{sym}{a_1^2a_2\cdots a_{n-1}}=\prod_{k=1}^{n-1}{a_k}\left(\sum_{k=1}^{n-1}{a_k}\right)$$
olduğu söylenebilir. Buna göre
$$LHS=\sum_{cyc}{\dfrac{1}{a_1^n+a_2^n+\cdots+a_{n-1}^n+\prod\limits_{cyc}{a_1}}}\leq \sum_{cyc}{\dfrac{1}{\prod\limits_{k=1}^{n-1}{a_k}\left(\sum\limits_{k=1}^{n-1}{a_k}\right)+\prod\limits_{cyc}{a_1}}}=\sum_{cyc}{\dfrac{1}{\prod\limits_{k=1}^{n-1}{a_k}\left(\sum\limits_{cyc}{a_1}\right)}}=$$
$$\dfrac{\sum\limits_{cyc}{a_1}}{\prod\limits_{cyc}{a_1}\left(\sum\limits_{cyc}{a_1}\right)}=\dfrac{1}{\prod\limits_{cyc}{a_1}}$$
elde eder ve ispatı bitiririz.