Gönderen Konu: Tek Sayıda Köşesi Olan m-düzenli Çizgeler {Çözüldü}  (Okunma sayısı 3822 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Tek Sayıda Köşesi Olan m-düzenli Çizgeler {Çözüldü}
« : Eylül 24, 2022, 03:11:26 ös »
Problem: Her $n\geq 1$ tek tam sayısı ve $0\leq m < n$ aralığındaki her $m$ çift tam sayısı için $n$ köşeli bir $m$-düzenli çizgenin varlığını kanıtlayınız.


Notlar:
$\color{blue}\bullet $ $n$ köşeli bir $m$-düzenli çizge, köşelerin her birinin derecesinin aynı $m$ sayısına eşit olduğu çizgelerdir.

$\color{blue}\bullet $ $m$ ve $n$ tek sayı iken $n$ köşeli $m$-düzenli çizge yoktur. Çünkü çizgenin toplam derecesi $m\cdot n$ bir tek sayıdır ve Leonard Euler'in El Sıkışma Teoremi ne göre, çizgenin toplam derecesi çift sayı olmalıdır. Çelişki.

$\color{blue}\bullet $ $m=0$ durumunda çizgeye hiç kenar çizmiyoruz demektir. $n>m\geq 2$ problemi çözülmelidir.

$\color{blue}\bullet$ $n$ için çift sayı durumu incelenmişti. Bunlarla beraber düşünülürse, $n$ köşeli $m$-düzenli çizgeler ile ilgili olarak $(m,n)$ ikililerinin alabileceği tüm değerleri belirlemiş oluyoruz.
« Son Düzenleme: Eylül 24, 2022, 03:29:51 ös Gönderen: Lokman Gökçe »
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Ynt: Tek Sayıda Köşesi Olan m-düzenli Çizgeler
« Yanıtla #1 : Eylül 24, 2022, 03:29:02 ös »
Çözüm: $n=2k+1$ tek tam sayı olsun ($k\geq 1$). İndislerdeki toplama çıkarma işlemleri modülo $n$ üzerinde olmak üzere, çizgenin köşeleri $A_1A_2\dots A_n$ düzgün çokgeninin köşeleri olsun.

$m=2t$ ($t\geq 1$) çift tek sayı iken  $A_i$ köşesini kendinden önceki ilk $t$ tane köşeye, kendinden sonraki ilk $t$ tane köşeye birleştiririz. Yani $A_i$ noktasını, $\{ A_{i-1}, A_{i-2}, \dots, A_{i-t}, A_{i+1}, A_{i+2}, \dots, A_{i+t} \}$ noktalarıyla birleştirerek $\deg(A_i)= 2t = m$ elde ederiz. Böylece, verilen aralıktaki her $m$ çift sayısı için uygun konfigürasyon bulunmuş olur.
$n=11$ ve $m=6$ için örnek çizim aşağıdadır.

Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal