Gönderen Konu: Tübitak Ortaokul 2. Aşama 2021 Soru 1  (Okunma sayısı 1911 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.611
  • Karma: +4/-0
Tübitak Ortaokul 2. Aşama 2021 Soru 1
« : Mayıs 11, 2022, 03:18:56 öö »
                                               $\dfrac{3n^2}{m}$  ve  $\sqrt{n^2+m}$

sayılarının her ikisinin tam sayı olmasını sağlayan tüm $(m,n)$ pozitif tam sayı ikililerini bulunuz.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.443
  • Karma: +10/-0
Ynt: Tübitak Ortaokul 2. Aşama 2021 Soru 1
« Yanıtla #1 : Kasım 27, 2023, 06:23:01 ös »
$\sqrt{n^2+m}>n$ olduğundan $a\geq 1$ tamsayısı için $\sqrt{n^2+m}=n+a$ diyelim. Buradan $$m=a^2+2an$$ elde edilir. $(a,n)=d$ dersek, $(u,v)=1$ ve $a=ud$ ve $n=vd$ olacak şekilde $u$ ve $v$ pozitif tamsayıları vardır. $\frac{3n^2}{m}$'nin tamsayı olmasını kullanırsak, $$\frac{3n^2}{m}\in\mathbb{Z}\implies \frac{3v^2}{u^2+2uv}\in\mathbb{Z}\implies u\mid 3v^2\implies u\mid 3$$ olacağından $u=1$ veya $u=3$ elde edilir.

$i)$ $u=3$ ise $$\frac{3v^2}{9+6v}=\frac{v^2}{2v+3}\in\mathbb{Z}\implies \frac{2v^2}{2v+3}\in\mathbb{Z}$$ $$v-\frac{3v}{2v+3}\in\mathbb{Z}\implies \frac{6v}{2v+3}\in\mathbb{Z}\implies 3-\frac{9}{2v+3}\in\mathbb{Z}$$ $$\implies \frac{9}{2v+3}\in\mathbb{Z}$$ elde edilir. $u=3$ olduğundan $(v,3)=(2v+3,3)=1$ olmalıdır. $2v+3\geq 5$ olduğundan çözüm bulunmaz.

$ii)$ $u=1$ ise $$\frac{3v^2}{2v+1}\in\mathbb{Z}\implies \frac{6v^2}{2v+1}\in\mathbb{Z}\implies 3v-\frac{3v}{2v+1}\in\mathbb{Z}$$ $$\implies \frac{3v}{2v+1}\in\mathbb{Z}\implies \frac{6v}{2v+1}\in\mathbb{Z}\implies 3-\frac{3}{2v+1}\in\mathbb{Z}\implies \frac{3}{2v+1}\in\mathbb{Z}$$ elde edilir. $2v+1\geq 3$ olduğundan sadece $v=1$ çözümü bulunur. Bu durumda $n=a$ elde edileceğinden, $m=a^2+2an=3n^2$ elde edilir. Tüm çözümler $k\geq 1$ için $\boxed{(m,n)=(3k^2,k)}$ bulunur.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal