Çözümler:(a) $50.8 + 4\cdot 29.9 = 170.4$ puan almıştır. Tam sayı bir puan alındığı düşünülürse $170$ puan alınır diyebiliriz.
(b) $\dfrac{66 - 50.8}{29.9} = 0.5083$ olduğundan öğrencinin puanı yaklaşık olarak ortalamadan $0.5$ standart sapma ileridedir.
(c) Gauss dağılımı gösterdiği verililiyor. Birikimli Standart Normal Dağılım Fonksiyonu $\Phi (x)$ olsun. Örneğin:
$\bullet$ Ortalama kadar puan alındığında (ortalamadan $0$ standart sapma ilerideyken) $\Phi(0) = \dfrac{1}{2}=0.5$ olup sıralama $\% 50$'de demektir.
$\bullet$ Ortalamadan $0.5$ standart sapma ilerideyken $\Phi(0.5) =0.6904$ olup sıralama yaklaşık $\% 69$'da demektir. Bunun için integral hesaplama gerekir veya $z$-cetveli gerekir veya biz basitçe
Birikimli Normal Dağılım Fonksiyonu grafiğindeki $x$ değişkenini sürükleyelim.
$z$ cetveli nasıl kullanılır bağlantısından bunu öğrenebiliriz. Bağlantıdaki tabloda ise yaklaşık olarak $\Phi(0.5) = 0.6915$ olduğunu görüyoruz. Bu da öğrencinin başarı diliminin $\% 69$'da olduğunu gösterir. ($\% 99 - \% 100 $ aralığı en başarılı olanların, yani en yüksek puana sahip olanların bulunduğu aralıktır.)
(d) Burada $\Phi(z) = 0.66$ denklemini sağlayan $z$ değerini bulmamız isteniyor. Yine birikimli dağılım fonksiyonu grafiğini veya $z$ cetvelini kullanırsak $\Phi( 0.42) = 0.66$ olmaktadır. O halde öğrencinin sınav puanı $x$ (tam sayı) olmak üzere $ 50.8 + 0.42\cdot 29.9 = 63.358$ olup $x=63$ elde edilir.