Teorem 1. Herhangi bir $ABC$ üçgeninin; çevrel çember merkezi $O$, ortik üçgeni $DEF$, teğet üçgeni $KLM$ olsun. Bu durumda $DEF$ ve $KLM$ üçgenlerinin kenarları karşılıklı olarak birbirine paraleldir. Yani $DE \parallel KL$, $DF \parallel KM$, $EF \parallel LM$.
Teorem 2. Çevrel çemberin yarıçaplarını taşıyan doğrular $DEF$ üçgeninin kenarlarına (gerekirse uzantılarına) diktir. Yani $OA \perp EF$, $OB \perp DF$, $OC \perp DE$
Teorem 3. $KD$, $LE$, $MF$ doğruları noktadaştır. Bu nokta $X_{25}$ ile gösterilir.
Teorem 4. $ABC$ üçgeninin kenar orta noktaları $P$, $R$, $S$ ise $KP$, $LR$, $MS$ doğruları $O$ noktasında kesişir.
Teorem 5. $X_{25}$ noktası $ABC$ üçgeninin Euler doğrusu üzerindedir.
Notlar ve Yorumlar:1. Ortik Üçgen: $ABC$ üçgeninin dikme ayaklarını köşe kabul eden üçgendir.
2. Teğet üçgeni: $ABC$ üçgeninin çevrel çemberine $A$, $B$, $C$ noktalarında teğet olan doğruların oluşturduğu üçgendir.
3. Teorem 1-2-4'ün ifadelerine denk olan veya bu teoremleri bire sonuç olarak elde etmemizi sağlayacak teoremler Roger Jhonson 1929, sayfa 172 de verilmiştir.
4. R. Jhonson, Teorem 3'deki noktadaşlığı belirtmemiştir, ancak $DEF$ ve $KLM$ arasındaki homotetiyi görüp homoteti mekezinden kaynaklanan noktadaşlığı görmediği düşünülemez.
5. Teorem 5, R. Jhonson'da da yoktur. C. Kimbeling'in
sitesinde bir özellik olarak ispatsız biçimde verilmiştir. Ben de henüz ispatını bilmiyorum. Bu ispatı yapabilirsek foruma ekleyelim.