Çözüm 1:
$a+b+c+d = 32 $ denklemi $1\leq a \leq 9$, $ 0 \leq b \leq 9$, $ 0 \leq c \leq 9$, $ 0 \leq d \leq 9$ koşulları altında tam sayılarda çözmeliyiz. $a=a' + 1 $ dersek $0\leq a' \leq 8 $ olup denklem $$ a' + b + c + d = 31 \tag{1} $$ biçimine gelir. Bu denklemin negatif olmayan tamsayılardaki çözüm sayısı dağılım prensibinden $$N= \dbinom{34}{3}$$ olur. Bunlar $(1)$ için tüm çözümlerin sayısıdır.
Sonra $a' \geq 9 $ istenmeyen durumlarının sayısı (aslında $a\geq 10 $ durumlarının sayısı) için $a' = a'' + 9 $ değişken değiştirmesi yapalım. $a'' \geq 0$ olup denklem $a'' + b + c + d = 22 $ biçimine gelir. Dağılım prensibiyle bu denklemin çözüm sayısı $\dbinom{25}{3}$ olur.
Öte taraftan $(1)$ denkleminin $b\geq 10$, $c\geq 10$, $d\geq 10$ istenmeyen durumları da vardır. Örneğin $b\geq 10$ için $b= b'+10 $ denirse $(1)$ denklemi $a'+b'+c+d = 21 $ biçimine gelir. Dağılım prensibiyle çözüm sayısını $\dbinom{24}{3}$ buluruz. O halde tüm bu istenmeyen durumların toplamı $$ N_1 = \dbinom{25}{3} + 3\cdot \dbinom{24}{3} $$ olur.
Şimdi de $(1)$ denkleminin istenmeyen durumları arasındaki ikişerli kesişimleri hesaplayalım. Örneğin $a' \geq 9$ ve $b \geq 10$ durumunda $(1)$ denkemi $a'' + b' + c + d = 12 $ biçimine gelir. Bu denklemin çözüm sayısı $\dbinom{15}{3}$ olur. $b \geq 10$ ve $c \geq 10$ durumunda $(1)$ denkemi $a' + b' + c' + d = 11 $ biçimine gelir. Bu denklemin çözüm sayısı $\dbinom{14}{3}$ olur. Tüm bu ikişerli kesişimlerin toplamı $$ N_2 = 3\cdot \dbinom{15}{3} + 3\cdot \dbinom{14}{3} $$
olur.
Şimdi de istenmeyen üçlü kesişimleri hesaplayalım. Örneğin $a' \geq 9$, $b \geq 10$, $c \geq 10$ durumunda $(1)$ denklemi $a'' + b' + c' + d = 2$ biçimine gelir. Çözüm sayısı $\dbinom{5}{3}$ olur. $b \geq 10$, $c \geq 10$, $d \geq 10$ durumunda $(1)$ denklemi $a' + b' + c' + d' = 1$ biçimine gelir. Çözüm sayısı $\dbinom{4}{3}$ olur. Tüm bu üçlü kesişimlerin toplamı $$ N_3 = 3\cdot \dbinom{5}{3} + \dbinom{4}{3} $$
olur. Dörtlü kesişim durumu yoktur. Böylece $(1)$ denkleminin istenen özellikteki çözümlerinin sayısı içerme-dışarma prensibinden $$ N-N_1 + N_2 - N_3 = \dbinom{34}{3} - \dbinom{25}{3} - 3\cdot \dbinom{24}{3} + 3\cdot \dbinom{15}{3} + 3\cdot \dbinom{14}{3} - 3\cdot \dbinom{5}{3} - \dbinom{4}{3} $$ elde edilir.
Çözüm 2:
$32$ özdeş topu $4$ kutuya dağıtacağız. Her bir kutu en fazla $9$ top alabiliyor ve ilk kutuda en az $1$ top bulunması gerekiyor. Tüm kutuları $9$'ar top ile dolduralım ve $4\cdot 9 = 36$ top eder. Şimdi bu kutulardan toplamda $4$ top çekelim ki geriye $36-4=32$ top kalsın. Kutulardan sırasıyla $x,y,z,t$ tane top çekilmiş olsun. $$ x+ y + z + t = 4 \tag {2} $$ denkleminin negatif olmayan tam sayılardaki çözüm sayısı $\dbinom{7}{3}= 35$ bulunur.
Not: Alıştırma olarak, her iki çözüm yolundan elde edilen değerlerin aynı olduğunu kontrol ediniz.