$s>1$ için $\zeta(s)=\sum_{n=1}^{\infty} \dfrac{1}{n^s}$ ve $\eta(s)=\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}$ olmak üzere tanımlayalım.
$\sum_{n=1}^{\infty} \dfrac{1}{n^s}= \sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^s} + \sum_{n=1}^{\infty} \dfrac{1}{(2n)^s}$ şeklinde yazmamızda bir sakınca yoktur çünkü hala her terimi saymış oluruz. Denklemi şu şekilde de yazabiliriz:
$\zeta(s)= \sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^s} + 2^{-s}\zeta(s)$ yani $\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^s}=(1-2^{-s})\zeta(s)$
Bu toplam az sonra işimize yarayacak.
$\eta(s)=\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s} =\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^s} - \sum_{n=1}^{\infty} \dfrac{1}{(2n)^s}$ yazabiliriz. Az önce bulduğumuz toplamı kullanalım:
$\eta(s)=(1-2^{-s})\zeta(s)-2^{-s}\zeta(s)$ yani $\eta(s)=(1-2^{1-s})\zeta(s)$ olur.
$\zeta(2)$ Euler tarafından hesaplanmıştır ve değeri $\dfrac{\pi^2}{6}$'dir. İlk olarak bu değeri kullanarak işimize yarayabilecek bir seriyi $\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^s}=(1-2^{-s})\zeta(s)$ eşitliğinden hesaplayalım. $\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^2}=\dfrac{3\zeta(2)}{4}=\dfrac{\pi^2}{8}$ olur.
Şimdi ise $\eta(2)$ yani $\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^2}$ değerini $\eta(s)=(1-2^{1-s})\zeta(s)$ eşitliğinden hesaplayalım. $\eta(2)=\dfrac{\zeta(2)}{2}=\dfrac{\pi^2}{12}$ elde ederiz.